Question
Simplify the expression
27d3b3y313000
Evaluate
13000÷(dby×3)÷(dby×3)÷(dby×3)
Use the commutative property to reorder the terms
13000÷(3dby)÷(dby×3)÷(dby×3)
Use the commutative property to reorder the terms
13000÷(3dby)÷(3dby)÷(dby×3)
Use the commutative property to reorder the terms
13000÷(3dby)÷(3dby)÷(3dby)
Rewrite the expression
3dby13000÷(3dby)÷(3dby)
Divide the terms
More Steps

Evaluate
3dby13000÷(3dby)
Multiply by the reciprocal
3dby13000×3dby1
Multiply the terms
3dby×3dby13000
Multiply the terms
More Steps

Evaluate
3dby×3dby
Multiply the numbers
9dbydby
Multiply the terms
9d2byby
Multiply the terms
9d2b2y×y
Multiply the terms
9d2b2y2
9d2b2y213000
9d2b2y213000÷(3dby)
Multiply by the reciprocal
9d2b2y213000×3dby1
Multiply the terms
9d2b2y2×3dby13000
Solution
More Steps

Evaluate
9d2b2y2×3dby
Multiply the numbers
27d2b2y2dby
Multiply the terms
More Steps

Evaluate
d2×d
Use the product rule an×am=an+m to simplify the expression
d2+1
Add the numbers
d3
27d3b2y2by
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
27d3b3y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
27d3b3y3
27d3b3y313000
Show Solution

Find the excluded values
d=0,b=0,y=0
Evaluate
13000÷(dby×3)÷(dby×3)÷(dby×3)
To find the excluded values,set the denominators equal to 0
dby×3=0
Use the commutative property to reorder the terms
3dby=0
Evaluate
dby=0
Separate the equation into 3 possible cases
d=0b=0y=0
Solution
d=0,b=0,y=0
Show Solution
