Question
Simplify the expression
a2130−6a4−18a3
Evaluate
a2135−6a×a−36a×9−(5×a3a)
Divide the terms
More Steps

Evaluate
a3a
Use the product rule aman=an−m to simplify the expression
a3−11
Reduce the fraction
a21
a2135−6a×a−36a×9−(5×a21)
Multiply the terms
a2135−6a×a−36a×9−a25
Divide the terms
More Steps

Evaluate
36
Reduce the numbers
12
Calculate
2
a2135−6a×a−2a×9−a25
Multiply the terms
a2135−6a2−2a×9−a25
Multiply the terms
a2135−6a2−18a−a25
Reduce fractions to a common denominator
a2135−a26a2×a2−a218a×a2−a25
Write all numerators above the common denominator
a2135−6a2×a2−18a×a2−5
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a2135−6a4−18a×a2−5
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a2135−6a4−18a3−5
Solution
a2130−6a4−18a3
Show Solution

Find the excluded values
a=0
Evaluate
a2135−6a×a−36a×9−(5×a3a)
To find the excluded values,set the denominators equal to 0
a2=0a3=0
The only way a power can be 0 is when the base equals 0
a=0a3=0
The only way a power can be 0 is when the base equals 0
a=0a=0
Solution
a=0
Show Solution

Find the roots
a1≈−3.503732,a2≈1.668084
Evaluate
a2135−6a×a−36a×9−(5×a3a)
To find the roots of the expression,set the expression equal to 0
a2135−6a×a−36a×9−(5×a3a)=0
Find the domain
More Steps

Evaluate
{a2=0a3=0
The only way a power can not be 0 is when the base not equals 0
{a=0a3=0
The only way a power can not be 0 is when the base not equals 0
{a=0a=0
Find the intersection
a=0
a2135−6a×a−36a×9−(5×a3a)=0,a=0
Calculate
a2135−6a×a−36a×9−(5×a3a)=0
Divide the terms
More Steps

Evaluate
a3a
Use the product rule aman=an−m to simplify the expression
a3−11
Reduce the fraction
a21
a2135−6a×a−36a×9−(5×a21)=0
Multiply the terms
a2135−6a×a−36a×9−a25=0
Multiply the terms
a2135−6a2−36a×9−a25=0
Divide the terms
More Steps

Evaluate
36
Reduce the numbers
12
Calculate
2
a2135−6a2−2a×9−a25=0
Multiply the terms
a2135−6a2−18a−a25=0
Subtract the terms
More Steps

Simplify
a2135−6a2
Reduce fractions to a common denominator
a2135−a26a2×a2
Write all numerators above the common denominator
a2135−6a2×a2
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a2135−6a4
a2135−6a4−18a−a25=0
Subtract the terms
More Steps

Simplify
a2135−6a4−18a
Reduce fractions to a common denominator
a2135−6a4−a218a×a2
Write all numerators above the common denominator
a2135−6a4−18a×a2
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a2135−6a4−18a3
a2135−6a4−18a3−a25=0
Subtract the terms
More Steps

Simplify
a2135−6a4−18a3−a25
Write all numerators above the common denominator
a2135−6a4−18a3−5
Subtract the numbers
a2130−6a4−18a3
a2130−6a4−18a3=0
Cross multiply
130−6a4−18a3=a2×0
Simplify the equation
130−6a4−18a3=0
Factor the expression
2(65−3a4−9a3)=0
Divide both sides
65−3a4−9a3=0
Calculate
a≈−3.503732a≈1.668084
Check if the solution is in the defined range
a≈−3.503732a≈1.668084,a=0
Find the intersection of the solution and the defined range
a≈−3.503732a≈1.668084
Solution
a1≈−3.503732,a2≈1.668084
Show Solution
