Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
g1=−1857+2807,g2=18−57+2807
Alternative Form
g1≈−6.323083,g2≈−0.010251
Evaluate
14=4(−3g−19)×18g
Multiply
More Steps

Evaluate
4(−3g−19)×18g
Multiply the terms
72(−3g−19)g
Multiply the terms
72g(−3g−19)
14=72g(−3g−19)
Swap the sides
72g(−3g−19)=14
Expand the expression
More Steps

Evaluate
72g(−3g−19)
Apply the distributive property
72g(−3g)−72g×19
Multiply the terms
More Steps

Evaluate
72g(−3g)
Multiply the numbers
−216g×g
Multiply the terms
−216g2
−216g2−72g×19
Multiply the numbers
−216g2−1368g
−216g2−1368g=14
Move the expression to the left side
−216g2−1368g−14=0
Multiply both sides
216g2+1368g+14=0
Substitute a=216,b=1368 and c=14 into the quadratic formula g=2a−b±b2−4ac
g=2×216−1368±13682−4×216×14
Simplify the expression
g=432−1368±13682−4×216×14
Simplify the expression
More Steps

Evaluate
13682−4×216×14
Multiply the terms
More Steps

Evaluate
4×216×14
Multiply the terms
864×14
Multiply the numbers
12096
13682−12096
g=432−1368±13682−12096
Simplify the radical expression
More Steps

Evaluate
13682−12096
Add the numbers
1859328
Write the expression as a product where the root of one of the factors can be evaluated
2304×807
Write the number in exponential form with the base of 48
482×807
The root of a product is equal to the product of the roots of each factor
482×807
Reduce the index of the radical and exponent with 2
48807
g=432−1368±48807
Separate the equation into 2 possible cases
g=432−1368+48807g=432−1368−48807
Simplify the expression
More Steps

Evaluate
g=432−1368+48807
Divide the terms
More Steps

Evaluate
432−1368+48807
Rewrite the expression
43224(−57+2807)
Cancel out the common factor 24
18−57+2807
g=18−57+2807
g=18−57+2807g=432−1368−48807
Simplify the expression
More Steps

Evaluate
g=432−1368−48807
Divide the terms
More Steps

Evaluate
432−1368−48807
Rewrite the expression
43224(−57−2807)
Cancel out the common factor 24
18−57−2807
Use b−a=−ba=−ba to rewrite the fraction
−1857+2807
g=−1857+2807
g=18−57+2807g=−1857+2807
Solution
g1=−1857+2807,g2=18−57+2807
Alternative Form
g1≈−6.323083,g2≈−0.010251
Show Solution
