Question
Simplify the expression
14h2−28h4−8
Evaluate
14h2−4h×7h3−8
Solution
More Steps

Evaluate
−4h×7h3
Multiply the terms
−28h×h3
Multiply the terms with the same base by adding their exponents
−28h1+3
Add the numbers
−28h4
14h2−28h4−8
Show Solution

Factor the expression
2(7h2−14h4−4)
Evaluate
14h2−4h×7h3−8
Multiply
More Steps

Evaluate
4h×7h3
Multiply the terms
28h×h3
Multiply the terms with the same base by adding their exponents
28h1+3
Add the numbers
28h4
14h2−28h4−8
Solution
2(7h2−14h4−4)
Show Solution

Find the roots
h∈/R
Evaluate
14h2−4h×7h3−8
To find the roots of the expression,set the expression equal to 0
14h2−4h×7h3−8=0
Multiply
More Steps

Multiply the terms
4h×7h3
Multiply the terms
28h×h3
Multiply the terms with the same base by adding their exponents
28h1+3
Add the numbers
28h4
14h2−28h4−8=0
Solve the equation using substitution t=h2
14t−28t2−8=0
Rewrite in standard form
−28t2+14t−8=0
Multiply both sides
28t2−14t+8=0
Substitute a=28,b=−14 and c=8 into the quadratic formula t=2a−b±b2−4ac
t=2×2814±(−14)2−4×28×8
Simplify the expression
t=5614±(−14)2−4×28×8
Simplify the expression
More Steps

Evaluate
(−14)2−4×28×8
Multiply the terms
More Steps

Multiply the terms
4×28×8
Multiply the terms
112×8
Multiply the numbers
896
(−14)2−896
Rewrite the expression
142−896
Evaluate the power
196−896
Subtract the numbers
−700
t=5614±−700
Simplify the radical expression
More Steps

Evaluate
−700
Evaluate the power
700×−1
Evaluate the power
700×i
Evaluate the power
More Steps

Evaluate
700
Write the expression as a product where the root of one of the factors can be evaluated
100×7
Write the number in exponential form with the base of 10
102×7
The root of a product is equal to the product of the roots of each factor
102×7
Reduce the index of the radical and exponent with 2
107
107×i
t=5614±107×i
Separate the equation into 2 possible cases
t=5614+107×it=5614−107×i
Simplify the expression
More Steps

Evaluate
t=5614+107×i
Divide the terms
More Steps

Evaluate
5614+107×i
Rewrite the expression
562(7+57×i)
Cancel out the common factor 2
287+57×i
Simplify
41+2857i
t=41+2857i
t=41+2857it=5614−107×i
Simplify the expression
More Steps

Evaluate
t=5614−107×i
Divide the terms
More Steps

Evaluate
5614−107×i
Rewrite the expression
562(7−57×i)
Cancel out the common factor 2
287−57×i
Simplify
41−2857i
t=41−2857i
t=41+2857it=41−2857i
Substitute back
h2=41+2857ih2=41−2857i
Solve the equation for h
More Steps

Substitute back
h2=41+2857i
Simplify
h=41+2857i
Rewrite the complex number in polar form
More Steps

Evaluate
41+2857i
Determine the modulus and the argument of the complex number
r=(41)2+(2857)2θ=arctan412857
Calculate
r=714θ=arctan412857
Substitute the given values into the formula r(cosθ+isinθ)
714cosarctan412857+isinarctan412857
h=714cosarctan412857+isinarctan412857
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
h=714×cos2arctan(412857)+2kπ+isin2arctan(412857)+2kπ
Simplify
h=74686cos2arctan(412857)+2kπ+isin2arctan(412857)+2kπ
Since n=2,substitute k=0,1 into the expression
h1=74686cos2arctan(412857)+2×0×π+isin2arctan(412857)+2×0×πh2=74686cos2arctan(412857)+2×1×π+isin2arctan(412857)+2×1×π
Calculate
More Steps

Evaluate
2arctan(412857)+2×0×π
Any expression multiplied by 0 equals 0
2arctan(412857)+0
Add the terms
2arctan(757)
h1=74686cos2arctan(757)+isin2arctan(757)h2=74686cos2arctan(412857)+2×1×π+isin2arctan(412857)+2×1×π
Calculate
More Steps

Evaluate
2arctan(412857)+2×1×π
Multiply the terms
2arctan(412857)+2π
Evaluate the power
2arctan(757)+2π
h1=74686cos2arctan(757)+isin2arctan(757)h2=74686cos2arctan(757)+2π+isin2arctan(757)+2π
Calculate
h1=74686×cos(2arctan(757))+74686×sin(2arctan(757))ih2=74686×cos(2arctan(757)+2π)+74686×sin(2arctan(757)+2π)i
h1=74686×cos(2arctan(757))+74686×sin(2arctan(757))ih2=74686×cos(2arctan(757)+2π)+74686×sin(2arctan(757)+2π)ih2=41−2857i
Solve the equation for h
More Steps

Substitute back
h2=41−2857i
Simplify
h=41−2857i
Rewrite the complex number in polar form
More Steps

Evaluate
41−2857i
Determine the modulus and the argument of the complex number
r=(41)2+(−2857)2θ=arctan41−2857
Calculate
r=714θ=arctan41−2857
Since 41−2857i lies in the IV quadrant, add 2π to get the argument in the IV quadrant
r=714θ=arctan−412857+2π
Simplify
r=714θ=arctan(−757)+2π
Substitute the given values into the formula r(cosθ+isinθ)
714(cos(arctan(−757)+2π)+isin(arctan(−757)+2π))
h=714(cos(arctan(−757)+2π)+isin(arctan(−757)+2π))
Calculate the nth roots of a complex r(cos(θ)+i×sin(θ),using nz=nr(cosnθ+2kπ+isinnθ+2kπ)
h=714×cos2arctan(−757)+2π+2kπ+isin2arctan(−757)+2π+2kπ
Simplify
h=74686cos2arctan(−757)+2π+2kπ+isin2arctan(−757)+2π+2kπ
Since n=2,substitute k=0,1 into the expression
h1=74686cos2arctan(−757)+2π+2×0×π+isin2arctan(−757)+2π+2×0×πh2=74686cos2arctan(−757)+2π+2×1×π+isin2arctan(−757)+2π+2×1×π
Calculate
More Steps

Evaluate
2arctan(−757)+2π+2×0×π
Any expression multiplied by 0 equals 0
2arctan(−757)+2π+0
Removing 0 doesn't change the value,so remove it from the expression
2arctan(−757)+2π
h1=74686cos2arctan(−757)+2π+isin2arctan(−757)+2πh2=74686cos2arctan(−757)+2π+2×1×π+isin2arctan(−757)+2π+2×1×π
Calculate
h1=74686cos2arctan(−757)+2π+isin2arctan(−757)+2πh2=74686cos2arctan(−757)+2π+2π+isin2arctan(−757)+2π+2π
Calculate
h1=−74686×cos(−2arctan(−757))+74686×sin(2arctan(−757)+2π)ih2=74686×cos(2arctan(−757)+2π+2π)+74686×sin(2arctan(−757)+2π+2π)i
h1=74686×cos(2arctan(757))+74686×sin(2arctan(757))ih2=74686×cos(2arctan(757)+2π)+74686×sin(2arctan(757)+2π)ih1=−74686×cos(−2arctan(−757))+74686×sin(2arctan(−757)+2π)ih2=74686×cos(2arctan(−757)+2π+2π)+74686×sin(2arctan(−757)+2π+2π)i
Solution
h∈/R
Show Solution
