Question
Simplify the expression
14x3−14x2−81x
Evaluate
14x3−14x2−9x×9
Solution
14x3−14x2−81x
Show Solution

Factor the expression
x(14x2−14x−81)
Evaluate
14x3−14x2−9x×9
Multiply the terms
14x3−14x2−81x
Rewrite the expression
x×14x2−x×14x−x×81
Solution
x(14x2−14x−81)
Show Solution

Find the roots
x1=147−137,x2=0,x3=147+137
Alternative Form
x1≈−1.956769,x2=0,x3≈2.956769
Evaluate
14x3−14x2−9x×9
To find the roots of the expression,set the expression equal to 0
14x3−14x2−9x×9=0
Multiply the terms
14x3−14x2−81x=0
Factor the expression
x(14x2−14x−81)=0
Separate the equation into 2 possible cases
x=014x2−14x−81=0
Solve the equation
More Steps

Evaluate
14x2−14x−81=0
Substitute a=14,b=−14 and c=−81 into the quadratic formula x=2a−b±b2−4ac
x=2×1414±(−14)2−4×14(−81)
Simplify the expression
x=2814±(−14)2−4×14(−81)
Simplify the expression
More Steps

Evaluate
(−14)2−4×14(−81)
Multiply
(−14)2−(−4536)
Rewrite the expression
142−(−4536)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
142+4536
Evaluate the power
196+4536
Add the numbers
4732
x=2814±4732
Simplify the radical expression
More Steps

Evaluate
4732
Write the expression as a product where the root of one of the factors can be evaluated
676×7
Write the number in exponential form with the base of 26
262×7
The root of a product is equal to the product of the roots of each factor
262×7
Reduce the index of the radical and exponent with 2
267
x=2814±267
Separate the equation into 2 possible cases
x=2814+267x=2814−267
Simplify the expression
x=147+137x=2814−267
Simplify the expression
x=147+137x=147−137
x=0x=147+137x=147−137
Solution
x1=147−137,x2=0,x3=147+137
Alternative Form
x1≈−1.956769,x2=0,x3≈2.956769
Show Solution
