Question
Factor the expression
3(5+x4)
Evaluate
15+3x4
Solution
3(5+x4)
Show Solution

Find the roots
x1=−2420−2420i,x2=2420+2420i
Alternative Form
x1≈−1.057371−1.057371i,x2≈1.057371+1.057371i
Evaluate
15+(3x4)
To find the roots of the expression,set the expression equal to 0
15+(3x4)=0
Multiply the terms
15+3x4=0
Move the constant to the right-hand side and change its sign
3x4=0−15
Removing 0 doesn't change the value,so remove it from the expression
3x4=−15
Divide both sides
33x4=3−15
Divide the numbers
x4=3−15
Divide the numbers
More Steps

Evaluate
3−15
Reduce the numbers
1−5
Calculate
−5
x4=−5
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−5
Simplify the expression
More Steps

Evaluate
4−5
Rewrite the expression
45×(22+22i)
Apply the distributive property
45×22+45×22i
Multiply the numbers
More Steps

Evaluate
45×22
Multiply the numbers
245×2
Multiply the numbers
2420
2420+45×22i
Multiply the numbers
2420+2420i
x=±(2420+2420i)
Separate the equation into 2 possible cases
x=2420+2420ix=−2420−2420i
Solution
x1=−2420−2420i,x2=2420+2420i
Alternative Form
x1≈−1.057371−1.057371i,x2≈1.057371+1.057371i
Show Solution
