Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
b∈(−∞,−5330]∪[0,5330]
Evaluate
15×31b3≤6(b×9)
Remove the parentheses
15×31b3≤6b×9
Multiply the numbers
More Steps

Evaluate
15×31
Reduce the numbers
5×1
Simplify
5
5b3≤6b×9
Multiply the terms
5b3≤54b
Move the expression to the left side
5b3−54b≤0
Rewrite the expression
5b3−54b=0
Factor the expression
b(5b2−54)=0
Separate the equation into 2 possible cases
b=05b2−54=0
Solve the equation
More Steps

Evaluate
5b2−54=0
Move the constant to the right-hand side and change its sign
5b2=0+54
Removing 0 doesn't change the value,so remove it from the expression
5b2=54
Divide both sides
55b2=554
Divide the numbers
b2=554
Take the root of both sides of the equation and remember to use both positive and negative roots
b=±554
Simplify the expression
More Steps

Evaluate
554
To take a root of a fraction,take the root of the numerator and denominator separately
554
Simplify the radical expression
536
Multiply by the Conjugate
5×536×5
Multiply the numbers
5×5330
When a square root of an expression is multiplied by itself,the result is that expression
5330
b=±5330
Separate the equation into 2 possible cases
b=5330b=−5330
b=0b=5330b=−5330
Determine the test intervals using the critical values
b<−5330−5330<b<00<b<5330b>5330
Choose a value form each interval
b1=−4b2=−2b3=2b4=4
To determine if b<−5330 is the solution to the inequality,test if the chosen value b=−4 satisfies the initial inequality
More Steps

Evaluate
5(−4)3≤54(−4)
Multiply the terms
More Steps

Evaluate
5(−4)3
Evaluate the power
5(−64)
Multiply the numbers
−320
−320≤54(−4)
Multiply the numbers
More Steps

Evaluate
54(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−54×4
Multiply the numbers
−216
−320≤−216
Check the inequality
true
b<−5330 is the solutionb2=−2b3=2b4=4
To determine if −5330<b<0 is the solution to the inequality,test if the chosen value b=−2 satisfies the initial inequality
More Steps

Evaluate
5(−2)3≤54(−2)
Multiply the terms
More Steps

Evaluate
5(−2)3
Evaluate the power
5(−8)
Multiply the numbers
−40
−40≤54(−2)
Multiply the numbers
More Steps

Evaluate
54(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−54×2
Multiply the numbers
−108
−40≤−108
Check the inequality
false
b<−5330 is the solution−5330<b<0 is not a solutionb3=2b4=4
To determine if 0<b<5330 is the solution to the inequality,test if the chosen value b=2 satisfies the initial inequality
More Steps

Evaluate
5×23≤54×2
Multiply the terms
More Steps

Evaluate
5×23
Evaluate the power
5×8
Multiply the numbers
40
40≤54×2
Multiply the numbers
40≤108
Check the inequality
true
b<−5330 is the solution−5330<b<0 is not a solution0<b<5330 is the solutionb4=4
To determine if b>5330 is the solution to the inequality,test if the chosen value b=4 satisfies the initial inequality
More Steps

Evaluate
5×43≤54×4
Multiply the terms
More Steps

Evaluate
5×43
Evaluate the power
5×64
Multiply the numbers
320
320≤54×4
Multiply the numbers
320≤216
Check the inequality
false
b<−5330 is the solution−5330<b<0 is not a solution0<b<5330 is the solutionb>5330 is not a solution
The original inequality is a nonstrict inequality,so include the critical value in the solution
b≤−5330 is the solution0≤b≤5330 is the solution
Solution
b∈(−∞,−5330]∪[0,5330]
Show Solution
