Question
Simplify the expression
501505849863699011x25
Evaluate
1501510025011x2×10020030150
Multiply the terms
1501510025011×10020030x2150
Reduce the fraction
1501510025011×334001x25
Solution
501505849863699011x25
Show Solution

Find the excluded values
x=0
Evaluate
1501510025011x2×10020030150
To find the excluded values,set the denominators equal to 0
1501510025011x2×10020030=0
Multiply the terms
1501510025011×10020030x2=0
Rewrite the expression
x2=0
Solution
x=0
Show Solution

Find the roots
x∈∅
Evaluate
1501510025011x2×10020030150
To find the roots of the expression,set the expression equal to 0
1501510025011x2×10020030150=0
Find the domain
More Steps

Evaluate
1501510025011x2×10020030=0
Multiply the terms
1501510025011×10020030x2=0
Rewrite the expression
x2=0
The only way a power can not be 0 is when the base not equals 0
x=0
1501510025011x2×10020030150=0,x=0
Calculate
1501510025011x2×10020030150=0
Multiply the terms
1501510025011×10020030x2150=0
Calculate
More Steps

Evaluate
1501510025011×10020030150
Cancel out the common factor 30
1501510025011×3340015
Calculate
5015058498636990115
501505849863699011x25=0
Cross multiply
5=501505849863699011x2×0
Simplify the equation
5=0
Solution
x∈∅
Show Solution
