Question
Find the roots
x1=−151−15134i,x2=−151+15134i
Alternative Form
x1≈−0.06˙−0.771722i,x2≈−0.06˙+0.771722i
Evaluate
15x2+2x+9
To find the roots of the expression,set the expression equal to 0
15x2+2x+9=0
Substitute a=15,b=2 and c=9 into the quadratic formula x=2a−b±b2−4ac
x=2×15−2±22−4×15×9
Simplify the expression
x=30−2±22−4×15×9
Simplify the expression
More Steps

Evaluate
22−4×15×9
Multiply the terms
More Steps

Multiply the terms
4×15×9
Multiply the terms
60×9
Multiply the numbers
540
22−540
Evaluate the power
4−540
Subtract the numbers
−536
x=30−2±−536
Simplify the radical expression
More Steps

Evaluate
−536
Evaluate the power
536×−1
Evaluate the power
536×i
Evaluate the power
More Steps

Evaluate
536
Write the expression as a product where the root of one of the factors can be evaluated
4×134
Write the number in exponential form with the base of 2
22×134
The root of a product is equal to the product of the roots of each factor
22×134
Reduce the index of the radical and exponent with 2
2134
2134×i
x=30−2±2134×i
Separate the equation into 2 possible cases
x=30−2+2134×ix=30−2−2134×i
Simplify the expression
More Steps

Evaluate
x=30−2+2134×i
Divide the terms
More Steps

Evaluate
30−2+2134×i
Rewrite the expression
302(−1+134×i)
Cancel out the common factor 2
15−1+134×i
Use b−a=−ba=−ba to rewrite the fraction
−151−134×i
Simplify
−151+15134i
x=−151+15134i
x=−151+15134ix=30−2−2134×i
Simplify the expression
More Steps

Evaluate
x=30−2−2134×i
Divide the terms
More Steps

Evaluate
30−2−2134×i
Rewrite the expression
302(−1−134×i)
Cancel out the common factor 2
15−1−134×i
Use b−a=−ba=−ba to rewrite the fraction
−151+134×i
Simplify
−151−15134i
x=−151−15134i
x=−151+15134ix=−151−15134i
Solution
x1=−151−15134i,x2=−151+15134i
Alternative Form
x1≈−0.06˙−0.771722i,x2≈−0.06˙+0.771722i
Show Solution
