Question
Simplify the expression
15x3−6x2−490x
Evaluate
15x3−6x2−35x×14
Solution
15x3−6x2−490x
Show Solution

Factor the expression
x(15x2−6x−490)
Evaluate
15x3−6x2−35x×14
Multiply the terms
15x3−6x2−490x
Rewrite the expression
x×15x2−x×6x−x×490
Solution
x(15x2−6x−490)
Show Solution

Find the roots
x1=153−7359,x2=0,x3=153+7359
Alternative Form
x1≈−5.518974,x2=0,x3≈5.918974
Evaluate
15x3−6x2−35x×14
To find the roots of the expression,set the expression equal to 0
15x3−6x2−35x×14=0
Multiply the terms
15x3−6x2−490x=0
Factor the expression
x(15x2−6x−490)=0
Separate the equation into 2 possible cases
x=015x2−6x−490=0
Solve the equation
More Steps

Evaluate
15x2−6x−490=0
Substitute a=15,b=−6 and c=−490 into the quadratic formula x=2a−b±b2−4ac
x=2×156±(−6)2−4×15(−490)
Simplify the expression
x=306±(−6)2−4×15(−490)
Simplify the expression
More Steps

Evaluate
(−6)2−4×15(−490)
Multiply
(−6)2−(−29400)
Rewrite the expression
62−(−29400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+29400
Evaluate the power
36+29400
Add the numbers
29436
x=306±29436
Simplify the radical expression
More Steps

Evaluate
29436
Write the expression as a product where the root of one of the factors can be evaluated
4×7359
Write the number in exponential form with the base of 2
22×7359
The root of a product is equal to the product of the roots of each factor
22×7359
Reduce the index of the radical and exponent with 2
27359
x=306±27359
Separate the equation into 2 possible cases
x=306+27359x=306−27359
Simplify the expression
x=153+7359x=306−27359
Simplify the expression
x=153+7359x=153−7359
x=0x=153+7359x=153−7359
Solution
x1=153−7359,x2=0,x3=153+7359
Alternative Form
x1≈−5.518974,x2=0,x3≈5.918974
Show Solution
