Question
Simplify the expression
16×5xx−8−3780
Evaluate
16×51−x8−189×20
Subtract the terms
More Steps

Simplify
1−x8
Reduce fractions to a common denominator
xx−x8
Write all numerators above the common denominator
xx−8
16×5xx−8−189×20
Solution
16×5xx−8−3780
Show Solution

Factor the expression
20(4×5−x8−189)
Evaluate
16×51−x8−189×20
Subtract the terms
More Steps

Simplify
1−x8
Reduce fractions to a common denominator
xx−x8
Write all numerators above the common denominator
xx−8
16×5xx−8−189×20
Multiply the numbers
16×5xx−8−3780
Factor out 4 from the expression
4(4×5xx−8−945)
Factor the expression
4×5(4×5−x8−189)
Solution
20(4×5−x8−189)
Show Solution

Find the roots
x=−log5(189)+2log5(2)8
Alternative Form
x≈−3.339557
Evaluate
16×51−x8−189×20
To find the roots of the expression,set the expression equal to 0
16×51−x8−189×20=0
Find the domain
16×51−x8−189×20=0,x=0
Calculate
16×51−x8−189×20=0
Subtract the terms
More Steps

Simplify
1−x8
Reduce fractions to a common denominator
xx−x8
Write all numerators above the common denominator
xx−8
16×5xx−8−189×20=0
Multiply the numbers
16×5xx−8−3780=0
Rewrite the expression
16×5xx−8=3780
Divide both sides
1616×5xx−8=163780
Divide the numbers
5xx−8=163780
Cancel out the common factor 4
5xx−8=4945
Take the logarithm of both sides
log5(5xx−8)=log5(4945)
Evaluate the logarithm
xx−8=log5(4945)
Cross multiply
x−8=xlog5(4945)
Simplify the equation
x−8=log5(4945)×x
Move the variable to the left side
x−8−log5(4945)×x=0
Collect like terms by calculating the sum or difference of their coefficients
(1−log5(4945))x−8=0
Move the constant to the right side
(1−log5(4945))x=0+8
Removing 0 doesn't change the value,so remove it from the expression
(1−log5(4945))x=8
Divide both sides
1−log5(4945)(1−log5(4945))x=1−log5(4945)8
Divide the numbers
x=1−log5(4945)8
Simplify
More Steps

Evaluate
1−log5(4945)
Simplify
More Steps

Evaluate
−log5(4945)
Use loga(yx)=loga(x)−loga(y) to transform the expression
−(log5(945)−log5(4))
Simplify the expression
−(1+log5(189)−log5(4))
Simplify the expression
−(1+log5(189)−2log5(2))
Calculate
−1−log5(189)+2log5(2)
1−1−log5(189)+2log5(2)
Calculate
−log5(189)+2log5(2)
x=−log5(189)+2log5(2)8
Check if the solution is in the defined range
x=−log5(189)+2log5(2)8,x=0
Solution
x=−log5(189)+2log5(2)8
Alternative Form
x≈−3.339557
Show Solution
