Question
Simplify the expression
1600−40y−40y2
Evaluate
1600−40y−40y×y
Solution
1600−40y−40y2
Show Solution

Factor the expression
40(40−y−y2)
Evaluate
1600−40y−40y×y
Multiply the terms
1600−40y−40y2
Solution
40(40−y−y2)
Show Solution

Find the roots
y1=−21+161,y2=2−1+161
Alternative Form
y1≈−6.844289,y2≈5.844289
Evaluate
1600−40y−40y×y
To find the roots of the expression,set the expression equal to 0
1600−40y−40y×y=0
Multiply the terms
1600−40y−40y2=0
Rewrite in standard form
−40y2−40y+1600=0
Multiply both sides
40y2+40y−1600=0
Substitute a=40,b=40 and c=−1600 into the quadratic formula y=2a−b±b2−4ac
y=2×40−40±402−4×40(−1600)
Simplify the expression
y=80−40±402−4×40(−1600)
Simplify the expression
More Steps

Evaluate
402−4×40(−1600)
Multiply
More Steps

Multiply the terms
4×40(−1600)
Rewrite the expression
−4×40×1600
Multiply the terms
−256000
402−(−256000)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
402+256000
Evaluate the power
1600+256000
Add the numbers
257600
y=80−40±257600
Simplify the radical expression
More Steps

Evaluate
257600
Write the expression as a product where the root of one of the factors can be evaluated
1600×161
Write the number in exponential form with the base of 40
402×161
The root of a product is equal to the product of the roots of each factor
402×161
Reduce the index of the radical and exponent with 2
40161
y=80−40±40161
Separate the equation into 2 possible cases
y=80−40+40161y=80−40−40161
Simplify the expression
More Steps

Evaluate
y=80−40+40161
Divide the terms
More Steps

Evaluate
80−40+40161
Rewrite the expression
8040(−1+161)
Cancel out the common factor 40
2−1+161
y=2−1+161
y=2−1+161y=80−40−40161
Simplify the expression
More Steps

Evaluate
y=80−40−40161
Divide the terms
More Steps

Evaluate
80−40−40161
Rewrite the expression
8040(−1−161)
Cancel out the common factor 40
2−1−161
Use b−a=−ba=−ba to rewrite the fraction
−21+161
y=−21+161
y=2−1+161y=−21+161
Solution
y1=−21+161,y2=2−1+161
Alternative Form
y1≈−6.844289,y2≈5.844289
Show Solution
