Question Simplify the expression 221r33 Evaluate 65165÷(r×17)Cancel out the common factor 5 1333÷(r×17)Use the commutative property to reorder the terms 1333÷17rMultiply by the reciprocal 1333×17r1Multiply the terms 13×17r33Solution 221r33 Show Solution Find the excluded values r=0 Evaluate 65165÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65165÷(r×17)To find the roots of the expression,set the expression equal to 0 65165÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 65165÷(r×17)=0,r=0Calculate 65165÷(r×17)=0Cancel out the common factor 5 1333÷(r×17)=0Use the commutative property to reorder the terms 1333÷17r=0Divide the terms More Steps Evaluate 1333÷17rMultiply by the reciprocal 1333×17r1Multiply the terms 13×17r33Multiply the terms 221r33 221r33=0Cross multiply 33=221r×0Simplify the equation 33=0Solution r∈∅ Show Solution