Question Simplify the expression 182r33 Evaluate 70165÷(r×13)Cancel out the common factor 5 1433÷(r×13)Use the commutative property to reorder the terms 1433÷13rMultiply by the reciprocal 1433×13r1Multiply the terms 14×13r33Solution 182r33 Show Solution Find the excluded values r=0 Evaluate 70165÷(r×13)To find the excluded values,set the denominators equal to 0 r×13=0Use the commutative property to reorder the terms 13r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 70165÷(r×13)To find the roots of the expression,set the expression equal to 0 70165÷(r×13)=0Find the domain More Steps Evaluate r×13=0Use the commutative property to reorder the terms 13r=0Rewrite the expression r=0 70165÷(r×13)=0,r=0Calculate 70165÷(r×13)=0Cancel out the common factor 5 1433÷(r×13)=0Use the commutative property to reorder the terms 1433÷13r=0Divide the terms More Steps Evaluate 1433÷13rMultiply by the reciprocal 1433×13r1Multiply the terms 14×13r33Multiply the terms 182r33 182r33=0Cross multiply 33=182r×0Simplify the equation 33=0Solution r∈∅ Show Solution