Question
Factor the expression
2(2x−3)(4x2+6x+9)
Evaluate
16x3−54
Factor out 2 from the expression
2(8x3−27)
Solution
More Steps

Evaluate
8x3−27
Rewrite the expression in exponential form
(2x)3−33
Use a3−b3=(a−b)(a2+ab+b2) to factor the expression
(2x−3)((2x)2+2x×3+32)
Evaluate
More Steps

Evaluate
(2x)2
To raise a product to a power,raise each factor to that power
22x2
Evaluate the power
4x2
(2x−3)(4x2+2x×3+32)
Evaluate
(2x−3)(4x2+6x+32)
Evaluate
(2x−3)(4x2+6x+9)
2(2x−3)(4x2+6x+9)
Show Solution

Find the roots
x=23
Alternative Form
x=1.5
Evaluate
16x3−54
To find the roots of the expression,set the expression equal to 0
16x3−54=0
Move the constant to the right-hand side and change its sign
16x3=0+54
Removing 0 doesn't change the value,so remove it from the expression
16x3=54
Divide both sides
1616x3=1654
Divide the numbers
x3=1654
Cancel out the common factor 2
x3=827
Take the 3-th root on both sides of the equation
3x3=3827
Calculate
x=3827
Solution
More Steps

Evaluate
3827
To take a root of a fraction,take the root of the numerator and denominator separately
38327
Simplify the radical expression
More Steps

Evaluate
327
Write the number in exponential form with the base of 3
333
Reduce the index of the radical and exponent with 3
3
383
Simplify the radical expression
More Steps

Evaluate
38
Write the number in exponential form with the base of 2
323
Reduce the index of the radical and exponent with 3
2
23
x=23
Alternative Form
x=1.5
Show Solution
