Question
Factor the expression
(2x−3)(2x+3)(4x2+9)
Evaluate
16x4−81
Rewrite the expression in exponential form
(4x2)2−(8121)2
Use a2−b2=(a−b)(a+b) to factor the expression
(4x2−8121)(4x2+8121)
Evaluate
More Steps

Evaluate
4x2−8121
Calculate
More Steps

Evaluate
−8121
Rewrite in exponential form
−(34)21
Multiply the exponents
−34×21
Multiply the exponents
−32
Evaluate the power
−9
4x2−9
(4x2−9)(4x2+8121)
Evaluate
More Steps

Evaluate
4x2+8121
Calculate
More Steps

Evaluate
8121
Rewrite in exponential form
(34)21
Multiply the exponents
34×21
Multiply the exponents
32
Evaluate the power
9
4x2+9
(4x2−9)(4x2+9)
Solution
More Steps

Evaluate
4x2−9
Rewrite the expression in exponential form
(2x)2−32
Use a2−b2=(a−b)(a+b) to factor the expression
(2x−3)(2x+3)
(2x−3)(2x+3)(4x2+9)
Show Solution

Find the roots
x1=−23,x2=23
Alternative Form
x1=−1.5,x2=1.5
Evaluate
16x4−81
To find the roots of the expression,set the expression equal to 0
16x4−81=0
Move the constant to the right-hand side and change its sign
16x4=0+81
Removing 0 doesn't change the value,so remove it from the expression
16x4=81
Divide both sides
1616x4=1681
Divide the numbers
x4=1681
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±41681
Simplify the expression
More Steps

Evaluate
41681
To take a root of a fraction,take the root of the numerator and denominator separately
416481
Simplify the radical expression
More Steps

Evaluate
481
Write the number in exponential form with the base of 3
434
Reduce the index of the radical and exponent with 4
3
4163
Simplify the radical expression
More Steps

Evaluate
416
Write the number in exponential form with the base of 2
424
Reduce the index of the radical and exponent with 4
2
23
x=±23
Separate the equation into 2 possible cases
x=23x=−23
Solution
x1=−23,x2=23
Alternative Form
x1=−1.5,x2=1.5
Show Solution
