Question
Simplify the expression
16x4−20736x5−34992x2+52488x
Evaluate
16x4−96x3×216x2−216x×81(2x−3)
Multiply
More Steps

Multiply the terms
−96x3×216x2
Multiply the terms
−20736x3×x2
Multiply the terms with the same base by adding their exponents
−20736x3+2
Add the numbers
−20736x5
16x4−20736x5−216x×81(2x−3)
Multiply the terms
16x4−20736x5−17496x(2x−3)
Solution
More Steps

Evaluate
−17496x(2x−3)
Apply the distributive property
−17496x×2x−(−17496x×3)
Multiply the terms
More Steps

Evaluate
−17496x×2x
Multiply the numbers
−34992x×x
Multiply the terms
−34992x2
−34992x2−(−17496x×3)
Multiply the numbers
−34992x2−(−52488x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−34992x2+52488x
16x4−20736x5−34992x2+52488x
Show Solution

Factor the expression
8x(2x3−2592x4−4374x+6561)
Evaluate
16x4−96x3×216x2−216x×81(2x−3)
Multiply
More Steps

Multiply the terms
96x3×216x2
Multiply the terms
20736x3×x2
Multiply the terms with the same base by adding their exponents
20736x3+2
Add the numbers
20736x5
16x4−20736x5−216x×81(2x−3)
Multiply the terms
16x4−20736x5−17496x(2x−3)
Rewrite the expression
8x(2x3−2592x4)−8x×2187(2x−3)
Factor out 8x from the expression
8x(2x3−2592x4−2187(2x−3))
Solution
8x(2x3−2592x4−4374x+6561)
Show Solution

Find the roots
x1≈−1.49978,x2=0,x3≈0.97183
Evaluate
16x4−96x3×216x2−216x×81(2x−3)
To find the roots of the expression,set the expression equal to 0
16x4−96x3×216x2−216x×81(2x−3)=0
Multiply
More Steps

Multiply the terms
96x3×216x2
Multiply the terms
20736x3×x2
Multiply the terms with the same base by adding their exponents
20736x3+2
Add the numbers
20736x5
16x4−20736x5−216x×81(2x−3)=0
Multiply the terms
16x4−20736x5−17496x(2x−3)=0
Calculate
More Steps

Evaluate
−17496x(2x−3)
Apply the distributive property
−17496x×2x−(−17496x×3)
Multiply the terms
More Steps

Evaluate
−17496x×2x
Multiply the numbers
−34992x×x
Multiply the terms
−34992x2
−34992x2−(−17496x×3)
Multiply the numbers
−34992x2−(−52488x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−34992x2+52488x
16x4−20736x5−34992x2+52488x=0
Factor the expression
8x(2x3−2592x4−4374x+6561)=0
Divide both sides
x(2x3−2592x4−4374x+6561)=0
Separate the equation into 2 possible cases
x=02x3−2592x4−4374x+6561=0
Solve the equation
x=0x≈−1.49978x≈0.97183
Solution
x1≈−1.49978,x2=0,x3≈0.97183
Show Solution
