Question
Simplify the expression
1428a−204a2−2448
Evaluate
17(a−4)×6(6−2a)
Multiply the terms
102(a−4)(6−2a)
Multiply the terms
More Steps

Evaluate
102(a−4)
Apply the distributive property
102a−102×4
Multiply the numbers
102a−408
(102a−408)(6−2a)
Apply the distributive property
102a×6−102a×2a−408×6−(−408×2a)
Multiply the numbers
612a−102a×2a−408×6−(−408×2a)
Multiply the terms
More Steps

Evaluate
102a×2a
Multiply the numbers
204a×a
Multiply the terms
204a2
612a−204a2−408×6−(−408×2a)
Multiply the numbers
612a−204a2−2448−(−408×2a)
Multiply the numbers
612a−204a2−2448−(−816a)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
612a−204a2−2448+816a
Solution
More Steps

Evaluate
612a+816a
Collect like terms by calculating the sum or difference of their coefficients
(612+816)a
Add the numbers
1428a
1428a−204a2−2448
Show Solution

Factor the expression
204(a−4)(3−a)
Evaluate
17(a−4)×6(6−2a)
Multiply the terms
102(a−4)(6−2a)
Factor the expression
102(a−4)×2(3−a)
Solution
204(a−4)(3−a)
Show Solution

Find the roots
a1=3,a2=4
Evaluate
17(a−4)×6(6−2a)
To find the roots of the expression,set the expression equal to 0
17(a−4)×6(6−2a)=0
Multiply the terms
102(a−4)(6−2a)=0
Elimination the left coefficient
(a−4)(6−2a)=0
Separate the equation into 2 possible cases
a−4=06−2a=0
Solve the equation
More Steps

Evaluate
a−4=0
Move the constant to the right-hand side and change its sign
a=0+4
Removing 0 doesn't change the value,so remove it from the expression
a=4
a=46−2a=0
Solve the equation
More Steps

Evaluate
6−2a=0
Move the constant to the right-hand side and change its sign
−2a=0−6
Removing 0 doesn't change the value,so remove it from the expression
−2a=−6
Change the signs on both sides of the equation
2a=6
Divide both sides
22a=26
Divide the numbers
a=26
Divide the numbers
More Steps

Evaluate
26
Reduce the numbers
13
Calculate
3
a=3
a=4a=3
Solution
a1=3,a2=4
Show Solution
