Question Simplify the expression 105p8707 Evaluate 3017414÷(p×7)Cancel out the common factor 2 158707÷(p×7)Use the commutative property to reorder the terms 158707÷7pMultiply by the reciprocal 158707×7p1Multiply the terms 15×7p8707Solution 105p8707 Show Solution Find the excluded values p=0 Evaluate 3017414÷(p×7)To find the excluded values,set the denominators equal to 0 p×7=0Use the commutative property to reorder the terms 7p=0Solution p=0 Show Solution Find the roots p∈∅ Evaluate 3017414÷(p×7)To find the roots of the expression,set the expression equal to 0 3017414÷(p×7)=0Find the domain More Steps Evaluate p×7=0Use the commutative property to reorder the terms 7p=0Rewrite the expression p=0 3017414÷(p×7)=0,p=0Calculate 3017414÷(p×7)=0Cancel out the common factor 2 158707÷(p×7)=0Use the commutative property to reorder the terms 158707÷7p=0Divide the terms More Steps Evaluate 158707÷7pMultiply by the reciprocal 158707×7p1Multiply the terms 15×7p8707Multiply the terms 105p8707 105p8707=0Cross multiply 8707=105p×0Simplify the equation 8707=0Solution p∈∅ Show Solution