Question
Simplify the expression
174A−4203
Evaluate
174A−43−50
Solution
More Steps

Evaluate
−43−50
Reduce fractions to a common denominator
−43−450×4
Write all numerators above the common denominator
4−3−50×4
Multiply the numbers
4−3−200
Subtract the numbers
4−203
Use b−a=−ba=−ba to rewrite the fraction
−4203
174A−4203
Show Solution

Factor the expression
429(24A−7)
Evaluate
174A−43−50
Subtract the numbers
More Steps

Evaluate
−43−50
Reduce fractions to a common denominator
−43−450×4
Write all numerators above the common denominator
4−3−50×4
Multiply the numbers
4−3−200
Subtract the numbers
4−203
Use b−a=−ba=−ba to rewrite the fraction
−4203
174A−4203
Solution
429(24A−7)
Show Solution

Find the roots
A=247
Alternative Form
A=0.2916˙
Evaluate
174A−43−50
To find the roots of the expression,set the expression equal to 0
174A−43−50=0
Subtract the numbers
More Steps

Simplify
174A−43−50
Subtract the numbers
More Steps

Evaluate
−43−50
Reduce fractions to a common denominator
−43−450×4
Write all numerators above the common denominator
4−3−50×4
Multiply the numbers
4−3−200
Subtract the numbers
4−203
Use b−a=−ba=−ba to rewrite the fraction
−4203
174A−4203
174A−4203=0
Move the constant to the right-hand side and change its sign
174A=0+4203
Add the terms
174A=4203
Multiply by the reciprocal
174A×1741=4203×1741
Multiply
A=4203×1741
Solution
More Steps

Evaluate
4203×1741
Reduce the numbers
47×61
To multiply the fractions,multiply the numerators and denominators separately
4×67
Multiply the numbers
247
A=247
Alternative Form
A=0.2916˙
Show Solution
