Question Simplify the expression 39r7 Evaluate 65175÷(r×15)Cancel out the common factor 5 1335÷(r×15)Use the commutative property to reorder the terms 1335÷15rMultiply by the reciprocal 1335×15r1Cancel out the common factor 5 137×3r1Multiply the terms 13×3r7Solution 39r7 Show Solution Find the excluded values r=0 Evaluate 65175÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65175÷(r×15)To find the roots of the expression,set the expression equal to 0 65175÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 65175÷(r×15)=0,r=0Calculate 65175÷(r×15)=0Cancel out the common factor 5 1335÷(r×15)=0Use the commutative property to reorder the terms 1335÷15r=0Divide the terms More Steps Evaluate 1335÷15rMultiply by the reciprocal 1335×15r1Cancel out the common factor 5 137×3r1Multiply the terms 13×3r7Multiply the terms 39r7 39r7=0Cross multiply 7=39r×0Simplify the equation 7=0Solution r∈∅ Show Solution