Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=−1712+638,x2=17−12+638
Alternative Form
x1≈−2.881558,x2≈1.469793
Evaluate
17x2+24x−72=0
Substitute a=17,b=24 and c=−72 into the quadratic formula x=2a−b±b2−4ac
x=2×17−24±242−4×17(−72)
Simplify the expression
x=34−24±242−4×17(−72)
Simplify the expression
More Steps

Evaluate
242−4×17(−72)
Multiply
More Steps

Multiply the terms
4×17(−72)
Rewrite the expression
−4×17×72
Multiply the terms
−4896
242−(−4896)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
242+4896
Evaluate the power
576+4896
Add the numbers
5472
x=34−24±5472
Simplify the radical expression
More Steps

Evaluate
5472
Write the expression as a product where the root of one of the factors can be evaluated
144×38
Write the number in exponential form with the base of 12
122×38
The root of a product is equal to the product of the roots of each factor
122×38
Reduce the index of the radical and exponent with 2
1238
x=34−24±1238
Separate the equation into 2 possible cases
x=34−24+1238x=34−24−1238
Simplify the expression
More Steps

Evaluate
x=34−24+1238
Divide the terms
More Steps

Evaluate
34−24+1238
Rewrite the expression
342(−12+638)
Cancel out the common factor 2
17−12+638
x=17−12+638
x=17−12+638x=34−24−1238
Simplify the expression
More Steps

Evaluate
x=34−24−1238
Divide the terms
More Steps

Evaluate
34−24−1238
Rewrite the expression
342(−12−638)
Cancel out the common factor 2
17−12−638
Use b−a=−ba=−ba to rewrite the fraction
−1712+638
x=−1712+638
x=17−12+638x=−1712+638
Solution
x1=−1712+638,x2=17−12+638
Alternative Form
x1≈−2.881558,x2≈1.469793
Show Solution
