Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=1724−302,x2=1724+302
Alternative Form
x1≈−1.083906,x2≈3.907436
Evaluate
17x2−48x−72=0
Substitute a=17,b=−48 and c=−72 into the quadratic formula x=2a−b±b2−4ac
x=2×1748±(−48)2−4×17(−72)
Simplify the expression
x=3448±(−48)2−4×17(−72)
Simplify the expression
More Steps

Evaluate
(−48)2−4×17(−72)
Multiply
More Steps

Multiply the terms
4×17(−72)
Rewrite the expression
−4×17×72
Multiply the terms
−4896
(−48)2−(−4896)
Rewrite the expression
482−(−4896)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
482+4896
Evaluate the power
2304+4896
Add the numbers
7200
x=3448±7200
Simplify the radical expression
More Steps

Evaluate
7200
Write the expression as a product where the root of one of the factors can be evaluated
3600×2
Write the number in exponential form with the base of 60
602×2
The root of a product is equal to the product of the roots of each factor
602×2
Reduce the index of the radical and exponent with 2
602
x=3448±602
Separate the equation into 2 possible cases
x=3448+602x=3448−602
Simplify the expression
More Steps

Evaluate
x=3448+602
Divide the terms
More Steps

Evaluate
3448+602
Rewrite the expression
342(24+302)
Cancel out the common factor 2
1724+302
x=1724+302
x=1724+302x=3448−602
Simplify the expression
More Steps

Evaluate
x=3448−602
Divide the terms
More Steps

Evaluate
3448−602
Rewrite the expression
342(24−302)
Cancel out the common factor 2
1724−302
x=1724−302
x=1724+302x=1724−302
Solution
x1=1724−302,x2=1724+302
Alternative Form
x1≈−1.083906,x2≈3.907436
Show Solution
