Question
Simplify the expression
18−2x2+10x
Evaluate
18−2(x(x−5))
Remove the parentheses
18−2x(x−5)
Solution
More Steps

Evaluate
−2x(x−5)
Apply the distributive property
−2x×x−(−2x×5)
Multiply the terms
−2x2−(−2x×5)
Multiply the numbers
−2x2−(−10x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x2+10x
18−2x2+10x
Show Solution

Factor the expression
2(9−x2+5x)
Evaluate
18−2(x(x−5))
Remove the parentheses
18−2x(x−5)
Simplify
More Steps

Evaluate
−2x(x−5)
Apply the distributive property
−2x×x−2x(−5)
Multiply the terms
−2x2−2x(−5)
Multiply the terms
More Steps

Evaluate
−2(−5)
Multiplying or dividing an even number of negative terms equals a positive
2×5
Multiply the numbers
10
−2x2+10x
18−2x2+10x
Solution
2(9−x2+5x)
Show Solution

Find the roots
x1=25−61,x2=25+61
Alternative Form
x1≈−1.405125,x2≈6.405125
Evaluate
18−2(x(x−5))
To find the roots of the expression,set the expression equal to 0
18−2(x(x−5))=0
Multiply the terms
18−2x(x−5)=0
Calculate
More Steps

Evaluate
−2x(x−5)
Apply the distributive property
−2x×x−(−2x×5)
Multiply the terms
−2x2−(−2x×5)
Multiply the numbers
−2x2−(−10x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x2+10x
18−2x2+10x=0
Rewrite in standard form
−2x2+10x+18=0
Multiply both sides
2x2−10x−18=0
Substitute a=2,b=−10 and c=−18 into the quadratic formula x=2a−b±b2−4ac
x=2×210±(−10)2−4×2(−18)
Simplify the expression
x=410±(−10)2−4×2(−18)
Simplify the expression
More Steps

Evaluate
(−10)2−4×2(−18)
Multiply
More Steps

Multiply the terms
4×2(−18)
Rewrite the expression
−4×2×18
Multiply the terms
−144
(−10)2−(−144)
Rewrite the expression
102−(−144)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+144
Evaluate the power
100+144
Add the numbers
244
x=410±244
Simplify the radical expression
More Steps

Evaluate
244
Write the expression as a product where the root of one of the factors can be evaluated
4×61
Write the number in exponential form with the base of 2
22×61
The root of a product is equal to the product of the roots of each factor
22×61
Reduce the index of the radical and exponent with 2
261
x=410±261
Separate the equation into 2 possible cases
x=410+261x=410−261
Simplify the expression
More Steps

Evaluate
x=410+261
Divide the terms
More Steps

Evaluate
410+261
Rewrite the expression
42(5+61)
Cancel out the common factor 2
25+61
x=25+61
x=25+61x=410−261
Simplify the expression
More Steps

Evaluate
x=410−261
Divide the terms
More Steps

Evaluate
410−261
Rewrite the expression
42(5−61)
Cancel out the common factor 2
25−61
x=25−61
x=25+61x=25−61
Solution
x1=25−61,x2=25+61
Alternative Form
x1≈−1.405125,x2≈6.405125
Show Solution
