Question
Simplify the expression
180−34839x2+2765x
Evaluate
180−((9x×7−5)(7x×79))
Remove the parentheses
180−((9x×7−5)×7x×79)
Multiply the terms
180−((63x−5)×7x×79)
Multiply the terms
More Steps

Multiply the terms
(63x−5)×7x×79
Multiply the terms
(63x−5)×553x
Multiply the terms
553x(63x−5)
180−553x(63x−5)
Solution
More Steps

Evaluate
−553x(63x−5)
Apply the distributive property
−553x×63x−(−553x×5)
Multiply the terms
More Steps

Evaluate
−553x×63x
Multiply the numbers
−34839x×x
Multiply the terms
−34839x2
−34839x2−(−553x×5)
Multiply the numbers
−34839x2−(−2765x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−34839x2+2765x
180−34839x2+2765x
Show Solution

Find the roots
x1=9954395−667945,x2=9954395+667945
Alternative Form
x1≈−0.042423,x2≈0.121788
Evaluate
180−((9x×7−5)(7x×79))
To find the roots of the expression,set the expression equal to 0
180−((9x×7−5)(7x×79))=0
Multiply the terms
180−((63x−5)(7x×79))=0
Multiply the terms
180−((63x−5)×553x)=0
Multiply the terms
180−553x(63x−5)=0
Calculate
More Steps

Evaluate
−553x(63x−5)
Apply the distributive property
−553x×63x−(−553x×5)
Multiply the terms
More Steps

Evaluate
−553x×63x
Multiply the numbers
−34839x×x
Multiply the terms
−34839x2
−34839x2−(−553x×5)
Multiply the numbers
−34839x2−(−2765x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−34839x2+2765x
180−34839x2+2765x=0
Rewrite in standard form
−34839x2+2765x+180=0
Multiply both sides
34839x2−2765x−180=0
Substitute a=34839,b=−2765 and c=−180 into the quadratic formula x=2a−b±b2−4ac
x=2×348392765±(−2765)2−4×34839(−180)
Simplify the expression
x=696782765±(−2765)2−4×34839(−180)
Simplify the expression
More Steps

Evaluate
(−2765)2−4×34839(−180)
Multiply
More Steps

Multiply the terms
4×34839(−180)
Rewrite the expression
−4×34839×180
Multiply the terms
−25084080
(−2765)2−(−25084080)
Rewrite the expression
27652−(−25084080)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
27652+25084080
x=696782765±27652+25084080
Simplify the radical expression
More Steps

Evaluate
27652+25084080
Add the numbers
32729305
Write the expression as a product where the root of one of the factors can be evaluated
49×667945
Write the number in exponential form with the base of 7
72×667945
The root of a product is equal to the product of the roots of each factor
72×667945
Reduce the index of the radical and exponent with 2
7667945
x=696782765±7667945
Separate the equation into 2 possible cases
x=696782765+7667945x=696782765−7667945
Simplify the expression
More Steps

Evaluate
x=696782765+7667945
Divide the terms
More Steps

Evaluate
696782765+7667945
Rewrite the expression
696787(395+667945)
Cancel out the common factor 7
9954395+667945
x=9954395+667945
x=9954395+667945x=696782765−7667945
Simplify the expression
More Steps

Evaluate
x=696782765−7667945
Divide the terms
More Steps

Evaluate
696782765−7667945
Rewrite the expression
696787(395−667945)
Cancel out the common factor 7
9954395−667945
x=9954395−667945
x=9954395+667945x=9954395−667945
Solution
x1=9954395−667945,x2=9954395+667945
Alternative Form
x1≈−0.042423,x2≈0.121788
Show Solution
