Question Simplify the expression 165r37 Evaluate 55185÷(r×15)Cancel out the common factor 5 1137÷(r×15)Use the commutative property to reorder the terms 1137÷15rMultiply by the reciprocal 1137×15r1Multiply the terms 11×15r37Solution 165r37 Show Solution Find the excluded values r=0 Evaluate 55185÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 55185÷(r×15)To find the roots of the expression,set the expression equal to 0 55185÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 55185÷(r×15)=0,r=0Calculate 55185÷(r×15)=0Cancel out the common factor 5 1137÷(r×15)=0Use the commutative property to reorder the terms 1137÷15r=0Divide the terms More Steps Evaluate 1137÷15rMultiply by the reciprocal 1137×15r1Multiply the terms 11×15r37Multiply the terms 165r37 165r37=0Cross multiply 37=165r×0Simplify the equation 37=0Solution r∈∅ Show Solution