Question Simplify the expression 182r37 Evaluate 65185÷(r×14)Cancel out the common factor 5 1337÷(r×14)Use the commutative property to reorder the terms 1337÷14rMultiply by the reciprocal 1337×14r1Multiply the terms 13×14r37Solution 182r37 Show Solution Find the excluded values r=0 Evaluate 65185÷(r×14)To find the excluded values,set the denominators equal to 0 r×14=0Use the commutative property to reorder the terms 14r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 65185÷(r×14)To find the roots of the expression,set the expression equal to 0 65185÷(r×14)=0Find the domain More Steps Evaluate r×14=0Use the commutative property to reorder the terms 14r=0Rewrite the expression r=0 65185÷(r×14)=0,r=0Calculate 65185÷(r×14)=0Cancel out the common factor 5 1337÷(r×14)=0Use the commutative property to reorder the terms 1337÷14r=0Divide the terms More Steps Evaluate 1337÷14rMultiply by the reciprocal 1337×14r1Multiply the terms 13×14r37Multiply the terms 182r37 182r37=0Cross multiply 37=182r×0Simplify the equation 37=0Solution r∈∅ Show Solution