Question
192×168×1×66÷(8o×8o)
Simplify the expression
o233264
Evaluate
192×168×1×66÷(8o×8o)
Multiply
More Steps

Multiply the terms
8o×8o
Multiply the terms
64o×o
Multiply the terms
64o2
192×168×1×66÷64o2
Multiply the terms
More Steps

Multiply the terms
192×168×1×66
Rewrite the expression
192×168×66
Multiply the terms
32256×66
Multiply the numbers
2128896
2128896÷64o2
Rewrite the expression
64o22128896
Solution
More Steps

Evaluate
642128896
Reduce the numbers
133264
Calculate
33264
o233264
Show Solution

Find the excluded values
o=0
Evaluate
192×168×1×66÷(8o×8o)
To find the excluded values,set the denominators equal to 0
8o×8o=0
Multiply
More Steps

Evaluate
8o×8o
Multiply the terms
64o×o
Multiply the terms
64o2
64o2=0
Rewrite the expression
o2=0
Solution
o=0
Show Solution

Find the roots
o∈∅
Evaluate
192×168×1×66÷(8o×8o)
To find the roots of the expression,set the expression equal to 0
192×168×1×66÷(8o×8o)=0
Find the domain
More Steps

Evaluate
8o×8o=0
Multiply
More Steps

Evaluate
8o×8o
Multiply the terms
64o×o
Multiply the terms
64o2
64o2=0
Rewrite the expression
o2=0
The only way a power can not be 0 is when the base not equals 0
o=0
192×168×1×66÷(8o×8o)=0,o=0
Calculate
192×168×1×66÷(8o×8o)=0
Multiply
More Steps

Multiply the terms
8o×8o
Multiply the terms
64o×o
Multiply the terms
64o2
192×168×1×66÷64o2=0
Multiply the terms
More Steps

Multiply the terms
192×168×1×66
Rewrite the expression
192×168×66
Multiply the terms
32256×66
Multiply the numbers
2128896
2128896÷64o2=0
Divide the terms
More Steps

Evaluate
2128896÷64o2
Rewrite the expression
64o22128896
Calculate
More Steps

Evaluate
642128896
Reduce the numbers
133264
Calculate
33264
o233264
o233264=0
Cross multiply
33264=o2×0
Simplify the equation
33264=0
Solution
o∈∅
Show Solution
