Question Simplify the expression 48r13 Evaluate 45195÷(r×16)Cancel out the common factor 15 313÷(r×16)Use the commutative property to reorder the terms 313÷16rMultiply by the reciprocal 313×16r1Multiply the terms 3×16r13Solution 48r13 Show Solution Find the excluded values r=0 Evaluate 45195÷(r×16)To find the excluded values,set the denominators equal to 0 r×16=0Use the commutative property to reorder the terms 16r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 45195÷(r×16)To find the roots of the expression,set the expression equal to 0 45195÷(r×16)=0Find the domain More Steps Evaluate r×16=0Use the commutative property to reorder the terms 16r=0Rewrite the expression r=0 45195÷(r×16)=0,r=0Calculate 45195÷(r×16)=0Cancel out the common factor 15 313÷(r×16)=0Use the commutative property to reorder the terms 313÷16r=0Divide the terms More Steps Evaluate 313÷16rMultiply by the reciprocal 313×16r1Multiply the terms 3×16r13Multiply the terms 48r13 48r13=0Cross multiply 13=48r×0Simplify the equation 13=0Solution r∈∅ Show Solution