Question Simplify the expression 51r13 Evaluate 45195÷(r×17)Cancel out the common factor 15 313÷(r×17)Use the commutative property to reorder the terms 313÷17rMultiply by the reciprocal 313×17r1Multiply the terms 3×17r13Solution 51r13 Show Solution Find the excluded values r=0 Evaluate 45195÷(r×17)To find the excluded values,set the denominators equal to 0 r×17=0Use the commutative property to reorder the terms 17r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 45195÷(r×17)To find the roots of the expression,set the expression equal to 0 45195÷(r×17)=0Find the domain More Steps Evaluate r×17=0Use the commutative property to reorder the terms 17r=0Rewrite the expression r=0 45195÷(r×17)=0,r=0Calculate 45195÷(r×17)=0Cancel out the common factor 15 313÷(r×17)=0Use the commutative property to reorder the terms 313÷17r=0Divide the terms More Steps Evaluate 313÷17rMultiply by the reciprocal 313×17r1Multiply the terms 3×17r13Multiply the terms 51r13 51r13=0Cross multiply 13=51r×0Simplify the equation 13=0Solution r∈∅ Show Solution