Question
Simplify the expression
50r13
Evaluate
50195÷(r×15)
Cancel out the common factor 5
1039÷(r×15)
Use the commutative property to reorder the terms
1039÷15r
Multiply by the reciprocal
1039×15r1
Cancel out the common factor 3
1013×5r1
Multiply the terms
10×5r13
Solution
50r13
Show Solution

Find the excluded values
r=0
Evaluate
50195÷(r×15)
To find the excluded values,set the denominators equal to 0
r×15=0
Use the commutative property to reorder the terms
15r=0
Solution
r=0
Show Solution

Find the roots
r∈∅
Evaluate
50195÷(r×15)
To find the roots of the expression,set the expression equal to 0
50195÷(r×15)=0
Find the domain
More Steps

Evaluate
r×15=0
Use the commutative property to reorder the terms
15r=0
Rewrite the expression
r=0
50195÷(r×15)=0,r=0
Calculate
50195÷(r×15)=0
Cancel out the common factor 5
1039÷(r×15)=0
Use the commutative property to reorder the terms
1039÷15r=0
Divide the terms
More Steps

Evaluate
1039÷15r
Multiply by the reciprocal
1039×15r1
Cancel out the common factor 3
1013×5r1
Multiply the terms
10×5r13
Multiply the terms
50r13
50r13=0
Cross multiply
13=50r×0
Simplify the equation
13=0
Solution
r∈∅
Show Solution
