Question Simplify the expression 75r13 Evaluate 75195÷(r×15)Cancel out the common factor 15 513÷(r×15)Use the commutative property to reorder the terms 513÷15rMultiply by the reciprocal 513×15r1Multiply the terms 5×15r13Solution 75r13 Show Solution Find the excluded values r=0 Evaluate 75195÷(r×15)To find the excluded values,set the denominators equal to 0 r×15=0Use the commutative property to reorder the terms 15r=0Solution r=0 Show Solution Find the roots r∈∅ Evaluate 75195÷(r×15)To find the roots of the expression,set the expression equal to 0 75195÷(r×15)=0Find the domain More Steps Evaluate r×15=0Use the commutative property to reorder the terms 15r=0Rewrite the expression r=0 75195÷(r×15)=0,r=0Calculate 75195÷(r×15)=0Cancel out the common factor 15 513÷(r×15)=0Use the commutative property to reorder the terms 513÷15r=0Divide the terms More Steps Evaluate 513÷15rMultiply by the reciprocal 513×15r1Multiply the terms 5×15r13Multiply the terms 75r13 75r13=0Cross multiply 13=75r×0Simplify the equation 13=0Solution r∈∅ Show Solution