Question
Simplify the expression
204v4−190
Evaluate
1×v4×204−190
Solution
More Steps

Evaluate
1×v4×204
Rewrite the expression
v4×204
Use the commutative property to reorder the terms
204v4
204v4−190
Show Solution

Factor the expression
2(102v4−95)
Evaluate
1×v4×204−190
Multiply the terms
More Steps

Evaluate
1×v4×204
Rewrite the expression
v4×204
Use the commutative property to reorder the terms
204v4
204v4−190
Solution
2(102v4−95)
Show Solution

Find the roots
v1=−102495×1023,v2=102495×1023
Alternative Form
v1≈−0.982383,v2≈0.982383
Evaluate
1×v4×204−190
To find the roots of the expression,set the expression equal to 0
1×v4×204−190=0
Multiply the terms
More Steps

Multiply the terms
1×v4×204
Rewrite the expression
v4×204
Use the commutative property to reorder the terms
204v4
204v4−190=0
Move the constant to the right-hand side and change its sign
204v4=0+190
Removing 0 doesn't change the value,so remove it from the expression
204v4=190
Divide both sides
204204v4=204190
Divide the numbers
v4=204190
Cancel out the common factor 2
v4=10295
Take the root of both sides of the equation and remember to use both positive and negative roots
v=±410295
Simplify the expression
More Steps

Evaluate
410295
To take a root of a fraction,take the root of the numerator and denominator separately
4102495
Multiply by the Conjugate
4102×41023495×41023
The product of roots with the same index is equal to the root of the product
4102×41023495×1023
Multiply the numbers
More Steps

Evaluate
4102×41023
The product of roots with the same index is equal to the root of the product
4102×1023
Calculate the product
41024
Reduce the index of the radical and exponent with 4
102
102495×1023
v=±102495×1023
Separate the equation into 2 possible cases
v=102495×1023v=−102495×1023
Solution
v1=−102495×1023,v2=102495×1023
Alternative Form
v1≈−0.982383,v2≈0.982383
Show Solution
