Question
Simplify the expression
2500×611x20
Evaluate
1×x5(−60)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5
Evaluate the power
1×x5(−1)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5
Evaluate
1×x5(−1)×5x4(−61)×10x3(−62)×10x2(−63)×5x(−64)×1×x0(−6)x5
Evaluate the power
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)×1×x0(−6)x5
Evaluate the power
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)×1×1×(−6)x5
Rewrite the expression
x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)(−6)x5
Any expression multiplied by 1 remains the same
x5×5x4×6×10x3×62×10x2×63×5x×64×6x5
Multiply the terms with the same base by adding their exponents
x5+4+3+2+1+5×5×6×10×62×10×63×5×64×6
Add the numbers
x20×5×6×10×62×10×63×5×64×6
Multiply the terms
More Steps

Evaluate
5×10×10×5
Multiply the terms
50×10×5
Multiply the terms
500×5
Multiply the numbers
2500
x20×2500×6×62×63×64×6
Multiply the terms with the same base by adding their exponents
x20×2500×61+2+3+4+1
Add the numbers
x20×2500×611
Use the commutative property to reorder the terms
2500x20×611
Solution
2500×611x20
Show Solution

Find the roots
x∈∅
Evaluate
1×x5(−60)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5
To find the roots of the expression,set the expression equal to 0
1×x5(−60)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5=0
Find the domain
1×x5(−60)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5=0,x=0
Calculate
1×x5(−60)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5=0
Evaluate the power
1×x5(−1)×5x4(−61)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5=0
Evaluate the power
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x1(−64)×1×x0(−6)x5=0
Evaluate the power
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)×1×x0(−6)x5=0
Evaluate the power
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)×1×1×(−6)x5=0
Multiply the terms
More Steps

Multiply the terms
1×x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)×1×1×(−6)x5
Rewrite the expression
x5(−1)×5x4(−6)×10x3(−62)×10x2(−63)×5x(−64)(−6)x5
Any expression multiplied by 1 remains the same
x5×5x4×6×10x3×62×10x2×63×5x×64×6x5
Multiply the terms with the same base by adding their exponents
x5+4+3+2+1+5×5×6×10×62×10×63×5×64×6
Add the numbers
x20×5×6×10×62×10×63×5×64×6
Multiply the terms
More Steps

Evaluate
5×10×10×5
Multiply the terms
50×10×5
Multiply the terms
500×5
Multiply the numbers
2500
x20×2500×6×62×63×64×6
Multiply the terms with the same base by adding their exponents
x20×2500×61+2+3+4+1
Add the numbers
x20×2500×611
Use the commutative property to reorder the terms
2500x20×611
Multiply the numbers
2500×611x20
2500×611x20=0
Rewrite the expression
x20=0
The only way a power can be 0 is when the base equals 0
x=0
Check if the solution is in the defined range
x=0,x=0
Solution
x∈∅
Show Solution
