Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=4221−2289,x2=4221+2289
Alternative Form
x1≈−0.639131,x2≈1.639131
Evaluate
2(x−1)×3×7x−10=34
Multiply
More Steps

Evaluate
2(x−1)×3×7x
Multiply the terms
More Steps

Evaluate
2×3×7
Multiply the terms
6×7
Multiply the numbers
42
42(x−1)x
Multiply the terms
42x(x−1)
42x(x−1)−10=34
Expand the expression
More Steps

Evaluate
42x(x−1)
Apply the distributive property
42x×x−42x×1
Multiply the terms
42x2−42x×1
Any expression multiplied by 1 remains the same
42x2−42x
42x2−42x−10=34
Move the expression to the left side
42x2−42x−44=0
Substitute a=42,b=−42 and c=−44 into the quadratic formula x=2a−b±b2−4ac
x=2×4242±(−42)2−4×42(−44)
Simplify the expression
x=8442±(−42)2−4×42(−44)
Simplify the expression
More Steps

Evaluate
(−42)2−4×42(−44)
Multiply
More Steps

Multiply the terms
4×42(−44)
Rewrite the expression
−4×42×44
Multiply the terms
−7392
(−42)2−(−7392)
Rewrite the expression
422−(−7392)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
422+7392
Evaluate the power
1764+7392
Add the numbers
9156
x=8442±9156
Simplify the radical expression
More Steps

Evaluate
9156
Write the expression as a product where the root of one of the factors can be evaluated
4×2289
Write the number in exponential form with the base of 2
22×2289
The root of a product is equal to the product of the roots of each factor
22×2289
Reduce the index of the radical and exponent with 2
22289
x=8442±22289
Separate the equation into 2 possible cases
x=8442+22289x=8442−22289
Simplify the expression
More Steps

Evaluate
x=8442+22289
Divide the terms
More Steps

Evaluate
8442+22289
Rewrite the expression
842(21+2289)
Cancel out the common factor 2
4221+2289
x=4221+2289
x=4221+2289x=8442−22289
Simplify the expression
More Steps

Evaluate
x=8442−22289
Divide the terms
More Steps

Evaluate
8442−22289
Rewrite the expression
842(21−2289)
Cancel out the common factor 2
4221−2289
x=4221−2289
x=4221+2289x=4221−2289
Solution
x1=4221−2289,x2=4221+2289
Alternative Form
x1≈−0.639131,x2≈1.639131
Show Solution
