Question
Solve the equation
θ=32kπ,k∈Z
Alternative Form
θ=120∘k,k∈Z
Evaluate
2cos2(θ)−cos(θ)−1=0
Factor the expression
More Steps

Calculate
2cos2(θ)−cos(θ)−1
Rewrite the expression
2cos2(θ)+(1−2)cos(θ)−1
Calculate
2cos2(θ)+cos(θ)−2cos(θ)−1
Rewrite the expression
cos(θ)×2cos(θ)+cos(θ)−2cos(θ)−1
Factor out cos(θ) from the expression
cos(θ)(2cos(θ)+1)−2cos(θ)−1
Factor out −1 from the expression
cos(θ)(2cos(θ)+1)−(2cos(θ)+1)
Factor out 2cos(θ)+1 from the expression
(cos(θ)−1)(2cos(θ)+1)
(cos(θ)−1)(2cos(θ)+1)=0
Separate the equation into 2 possible cases
cos(θ)−1=02cos(θ)+1=0
Solve the equation
More Steps

Evaluate
cos(θ)−1=0
Move the constant to the right-hand side and change its sign
cos(θ)=0+1
Removing 0 doesn't change the value,so remove it from the expression
cos(θ)=1
Use the inverse trigonometric function
θ=arccos(1)
Calculate
θ=0
Add the period of 2kπ,k∈Z to find all solutions
θ=2kπ,k∈Z
θ=2kπ,k∈Z2cos(θ)+1=0
Solve the equation
More Steps

Evaluate
2cos(θ)+1=0
Move the constant to the right-hand side and change its sign
2cos(θ)=0−1
Removing 0 doesn't change the value,so remove it from the expression
2cos(θ)=−1
Divide both sides
22cos(θ)=2−1
Divide the numbers
cos(θ)=2−1
Use b−a=−ba=−ba to rewrite the fraction
cos(θ)=−21
Use the inverse trigonometric function
θ=arccos(−21)
Calculate
θ=32πθ=34π
Add the period of 2kπ,k∈Z to find all solutions
θ=32π+2kπ,k∈Zθ=34π+2kπ,k∈Z
Find the union
θ={32π+2kπ34π+2kπ,k∈Z
θ=2kπ,k∈Zθ={32π+2kπ34π+2kπ,k∈Z
Solution
θ=32kπ,k∈Z
Alternative Form
θ=120∘k,k∈Z
Show Solution

Rewrite the equation
3x2y2=y4
Evaluate
2cos2(θ)−cos(θ)−1=0
Multiply both sides
2(rcos(θ))2−cos(θ)×r2−r2=0
Use substitution
More Steps

Evaluate
2(rcos(θ))2−cos(θ)×r2−r2
To covert the equation to rectangular coordinates using conversion formulas,substitute rcosθ for x
2x2−cos(θ)×r2−r2
Use substitution
More Steps

Evaluate
−cos(θ)×r2
Use the commutative property to reorder the terms
r2cos(θ)(−1)
To covert the equation to rectangular coordinates using conversion formulas,substitute rcosθ for x
rx(−1)
Evaluate
xr(−1)
Multiply the terms
−xr
2x2−xr−r2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
2x2−xr−(x2+y2)
Simplify the expression
x2−xr−y2
x2−xr−y2=0
Simplify the expression
−xr=−x2+y2
Square both sides of the equation
(−xr)2=(−x2+y2)2
Evaluate
(−x)2r2=(−x2+y2)2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
(−x)2(x2+y2)=(−x2+y2)2
Use substitution
x2(x2+y2)=(−x2+y2)2
Calculate
x4+x2y2=x4−2x2y2+y4
Move the expression to the left side
x4+x2y2−(x4−2x2y2)=y4
Calculate
0+x2y2=−2x2y2+y4
Calculate
More Steps

Evaluate
x2y2+2x2y2
Collect like terms by calculating the sum or difference of their coefficients
(1+2)x2y2
Add the numbers
3x2y2
0+3x2y2=y4
Solution
3x2y2=y4
Show Solution
