Question
2x3−3x2−x×1
Simplify the expression
2x3−3x2−x
Evaluate
2x3−3x2−x×1
Solution
2x3−3x2−x
Show Solution

Factor the expression
x(2x2−3x−1)
Evaluate
2x3−3x2−x×1
Any expression multiplied by 1 remains the same
2x3−3x2−x
Rewrite the expression
x×2x2−x×3x−x
Solution
x(2x2−3x−1)
Show Solution

Find the roots
x1=43−17,x2=0,x3=43+17
Alternative Form
x1≈−0.280776,x2=0,x3≈1.780776
Evaluate
2x3−3x2−x×1
To find the roots of the expression,set the expression equal to 0
2x3−3x2−x×1=0
Any expression multiplied by 1 remains the same
2x3−3x2−x=0
Factor the expression
x(2x2−3x−1)=0
Separate the equation into 2 possible cases
x=02x2−3x−1=0
Solve the equation
More Steps

Evaluate
2x2−3x−1=0
Substitute a=2,b=−3 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×23±(−3)2−4×2(−1)
Simplify the expression
x=43±(−3)2−4×2(−1)
Simplify the expression
More Steps

Evaluate
(−3)2−4×2(−1)
Multiply
(−3)2−(−8)
Rewrite the expression
32−(−8)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+8
Evaluate the power
9+8
Add the numbers
17
x=43±17
Separate the equation into 2 possible cases
x=43+17x=43−17
x=0x=43+17x=43−17
Solution
x1=43−17,x2=0,x3=43+17
Alternative Form
x1≈−0.280776,x2=0,x3≈1.780776
Show Solution
