Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=2025−1145,x2=2025+1145
Alternative Form
x1≈−0.441892,x2≈2.941892
Evaluate
32(6x−15)×5x=26
Multiply
More Steps

Evaluate
32(6x−15)×5x
Multiply the terms
More Steps

Evaluate
32×5
Multiply the numbers
32×5
Multiply the numbers
310
310(6x−15)x
Multiply the terms
310x(6x−15)
310x(6x−15)=26
Expand the expression
More Steps

Evaluate
310x(6x−15)
Apply the distributive property
310x×6x−310x×15
Multiply the terms
More Steps

Evaluate
310x×6x
Multiply the numbers
20x×x
Multiply the terms
20x2
20x2−310x×15
Multiply the numbers
More Steps

Evaluate
310×15
Reduce the numbers
10×5
Multiply the numbers
50
20x2−50x
20x2−50x=26
Move the expression to the left side
20x2−50x−26=0
Substitute a=20,b=−50 and c=−26 into the quadratic formula x=2a−b±b2−4ac
x=2×2050±(−50)2−4×20(−26)
Simplify the expression
x=4050±(−50)2−4×20(−26)
Simplify the expression
More Steps

Evaluate
(−50)2−4×20(−26)
Multiply
More Steps

Multiply the terms
4×20(−26)
Rewrite the expression
−4×20×26
Multiply the terms
−2080
(−50)2−(−2080)
Rewrite the expression
502−(−2080)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
502+2080
Evaluate the power
2500+2080
Add the numbers
4580
x=4050±4580
Simplify the radical expression
More Steps

Evaluate
4580
Write the expression as a product where the root of one of the factors can be evaluated
4×1145
Write the number in exponential form with the base of 2
22×1145
The root of a product is equal to the product of the roots of each factor
22×1145
Reduce the index of the radical and exponent with 2
21145
x=4050±21145
Separate the equation into 2 possible cases
x=4050+21145x=4050−21145
Simplify the expression
More Steps

Evaluate
x=4050+21145
Divide the terms
More Steps

Evaluate
4050+21145
Rewrite the expression
402(25+1145)
Cancel out the common factor 2
2025+1145
x=2025+1145
x=2025+1145x=4050−21145
Simplify the expression
More Steps

Evaluate
x=4050−21145
Divide the terms
More Steps

Evaluate
4050−21145
Rewrite the expression
402(25−1145)
Cancel out the common factor 2
2025−1145
x=2025−1145
x=2025+1145x=2025−1145
Solution
x1=2025−1145,x2=2025+1145
Alternative Form
x1≈−0.441892,x2≈2.941892
Show Solution
