Question
Solve the inequality
x>−1.747413
Alternative Form
x∈(−1.747413,+∞)
Evaluate
2x2−14x3×7<529
Multiply the terms
2x2−98x3<529
Move the expression to the left side
2x2−98x3−529<0
Rewrite the expression
2x2−98x3−529=0
Find the critical values by solving the corresponding equation
x≈−1.747413
Determine the test intervals using the critical values
x<−1.747413x>−1.747413
Choose a value form each interval
x1=−3x2=−1
To determine if x<−1.747413 is the solution to the inequality,test if the chosen value x=−3 satisfies the initial inequality
More Steps

Evaluate
2(−3)2−98(−3)3<529
Simplify
More Steps

Evaluate
2(−3)2−98(−3)3
Multiply the terms
18−98(−3)3
Multiply the terms
18−(−2646)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
18+2646
Add the numbers
2664
2664<529
Check the inequality
false
x<−1.747413 is not a solutionx2=−1
To determine if x>−1.747413 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
2(−1)2−98(−1)3<529
Simplify
More Steps

Evaluate
2(−1)2−98(−1)3
Evaluate the power
2×1−98(−1)3
Any expression multiplied by 1 remains the same
2−98(−1)3
Multiply the terms
2−(−98)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2+98
Add the numbers
100
100<529
Check the inequality
true
x<−1.747413 is not a solutionx>−1.747413 is the solution
Solution
x>−1.747413
Alternative Form
x∈(−1.747413,+∞)
Show Solution
