Question
Simplify the expression
2560a7
Evaluate
2(2(a×1)×2)2×2(5a2×8a3)
Remove the parentheses
2(2a×1×2)2×2×5a2×8a3
Multiply the terms
More Steps

Multiply the terms
2a×1×2
Rewrite the expression
2a×2
Multiply the terms
4a
2(4a)2×2×5a2×8a3
Multiply the terms
More Steps

Evaluate
2×2×5×8
Multiply the terms
4×5×8
Multiply the terms
20×8
Multiply the numbers
160
160(4a)2a2×a3
Multiply the terms with the same base by adding their exponents
160(4a)2a2+3
Add the numbers
160(4a)2a5
Multiply the terms
More Steps

Evaluate
160(4a)2
Rewrite the expression
160×16a2
Multiply the numbers
2560a2
2560a2×a5
Solution
More Steps

Evaluate
a2×a5
Use the product rule an×am=an+m to simplify the expression
a2+5
Add the numbers
a7
2560a7
Show Solution

Find the roots
a=0
Evaluate
2(2(a×1)×2)2×2(5a2×8a3)
To find the roots of the expression,set the expression equal to 0
2(2(a×1)×2)2×2(5a2×8a3)=0
Any expression multiplied by 1 remains the same
2(2a×2)2×2(5a2×8a3)=0
Multiply the terms
2(4a)2×2(5a2×8a3)=0
Multiply
More Steps

Multiply the terms
5a2×8a3
Multiply the terms
40a2×a3
Multiply the terms with the same base by adding their exponents
40a2+3
Add the numbers
40a5
2(4a)2×2×40a5=0
Multiply
More Steps

Multiply the terms
2(4a)2×2×40a5
Multiply the terms
More Steps

Evaluate
2×2×40
Multiply the terms
4×40
Multiply the numbers
160
160(4a)2a5
Multiply the terms
More Steps

Evaluate
160(4a)2
Rewrite the expression
160×16a2
Multiply the numbers
2560a2
2560a2×a5
Multiply the terms
More Steps

Evaluate
a2×a5
Use the product rule an×am=an+m to simplify the expression
a2+5
Add the numbers
a7
2560a7
2560a7=0
Rewrite the expression
a7=0
Solution
a=0
Show Solution
