Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
2(2x−1)−6(1−2x)×2x=2(5x−5)
Multiply
More Steps

Evaluate
6(1−2x)×2x
Multiply the terms
12(1−2x)x
Multiply the terms
12x(1−2x)
2(2x−1)−12x(1−2x)=2(5x−5)
Expand the expression
More Steps

Evaluate
2(2x−1)−12x(1−2x)
Multiply the terms
More Steps

Evaluate
2(2x−1)
Apply the distributive property
2×2x−2×1
Multiply the numbers
4x−2×1
Any expression multiplied by 1 remains the same
4x−2
4x−2−12x(1−2x)
Multiply the terms
More Steps

Evaluate
−12x(1−2x)
Apply the distributive property
−12x×1−(−12x×2x)
Any expression multiplied by 1 remains the same
−12x−(−12x×2x)
Multiply the terms
−12x−(−24x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−12x+24x2
4x−2−12x+24x2
Subtract the terms
More Steps

Evaluate
4x−12x
Collect like terms by calculating the sum or difference of their coefficients
(4−12)x
Subtract the numbers
−8x
−8x−2+24x2
−8x−2+24x2=2(5x−5)
Expand the expression
More Steps

Evaluate
2(5x−5)
Apply the distributive property
2×5x−2×5
Multiply the numbers
10x−2×5
Multiply the numbers
10x−10
−8x−2+24x2=10x−10
Move the expression to the left side
−18x+8+24x2=0
Rewrite in standard form
24x2−18x+8=0
Substitute a=24,b=−18 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=2×2418±(−18)2−4×24×8
Simplify the expression
x=4818±(−18)2−4×24×8
Simplify the expression
More Steps

Evaluate
(−18)2−4×24×8
Multiply the terms
More Steps

Multiply the terms
4×24×8
Multiply the terms
96×8
Multiply the numbers
768
(−18)2−768
Rewrite the expression
182−768
Evaluate the power
324−768
Subtract the numbers
−444
x=4818±−444
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=83−24111i,x2=83+24111i
Alternative Form
x1≈0.375−0.438986i,x2≈0.375+0.438986i
Evaluate
2(2x−1)−6(1−2x)×2x=2(5x−5)
Multiply
More Steps

Evaluate
6(1−2x)×2x
Multiply the terms
12(1−2x)x
Multiply the terms
12x(1−2x)
2(2x−1)−12x(1−2x)=2(5x−5)
Expand the expression
More Steps

Evaluate
2(2x−1)−12x(1−2x)
Multiply the terms
More Steps

Evaluate
2(2x−1)
Apply the distributive property
2×2x−2×1
Multiply the numbers
4x−2×1
Any expression multiplied by 1 remains the same
4x−2
4x−2−12x(1−2x)
Multiply the terms
More Steps

Evaluate
−12x(1−2x)
Apply the distributive property
−12x×1−(−12x×2x)
Any expression multiplied by 1 remains the same
−12x−(−12x×2x)
Multiply the terms
−12x−(−24x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−12x+24x2
4x−2−12x+24x2
Subtract the terms
More Steps

Evaluate
4x−12x
Collect like terms by calculating the sum or difference of their coefficients
(4−12)x
Subtract the numbers
−8x
−8x−2+24x2
−8x−2+24x2=2(5x−5)
Expand the expression
More Steps

Evaluate
2(5x−5)
Apply the distributive property
2×5x−2×5
Multiply the numbers
10x−2×5
Multiply the numbers
10x−10
−8x−2+24x2=10x−10
Move the expression to the left side
−18x+8+24x2=0
Rewrite in standard form
24x2−18x+8=0
Substitute a=24,b=−18 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=2×2418±(−18)2−4×24×8
Simplify the expression
x=4818±(−18)2−4×24×8
Simplify the expression
More Steps

Evaluate
(−18)2−4×24×8
Multiply the terms
More Steps

Multiply the terms
4×24×8
Multiply the terms
96×8
Multiply the numbers
768
(−18)2−768
Rewrite the expression
182−768
Evaluate the power
324−768
Subtract the numbers
−444
x=4818±−444
Simplify the radical expression
More Steps

Evaluate
−444
Evaluate the power
444×−1
Evaluate the power
444×i
Evaluate the power
More Steps

Evaluate
444
Write the expression as a product where the root of one of the factors can be evaluated
4×111
Write the number in exponential form with the base of 2
22×111
The root of a product is equal to the product of the roots of each factor
22×111
Reduce the index of the radical and exponent with 2
2111
2111×i
x=4818±2111×i
Separate the equation into 2 possible cases
x=4818+2111×ix=4818−2111×i
Simplify the expression
More Steps

Evaluate
x=4818+2111×i
Divide the terms
More Steps

Evaluate
4818+2111×i
Rewrite the expression
482(9+111×i)
Cancel out the common factor 2
249+111×i
Simplify
83+24111i
x=83+24111i
x=83+24111ix=4818−2111×i
Simplify the expression
More Steps

Evaluate
x=4818−2111×i
Divide the terms
More Steps

Evaluate
4818−2111×i
Rewrite the expression
482(9−111×i)
Cancel out the common factor 2
249−111×i
Simplify
83−24111i
x=83−24111i
x=83+24111ix=83−24111i
Solution
x1=83−24111i,x2=83+24111i
Alternative Form
x1≈0.375−0.438986i,x2≈0.375+0.438986i
Show Solution
