Question
Simplify the expression
60a4−150a5
Evaluate
2×3a4×5(2−5a)
Multiply the terms
More Steps

Evaluate
2×3×5
Multiply the terms
6×5
Multiply the numbers
30
30a4(2−5a)
Apply the distributive property
30a4×2−30a4×5a
Multiply the numbers
60a4−30a4×5a
Solution
More Steps

Evaluate
30a4×5a
Multiply the numbers
150a4×a
Multiply the terms
More Steps

Evaluate
a4×a
Use the product rule an×am=an+m to simplify the expression
a4+1
Add the numbers
a5
150a5
60a4−150a5
Show Solution

Find the roots
a1=0,a2=52
Alternative Form
a1=0,a2=0.4
Evaluate
2(3a4)×5(2−5a)
To find the roots of the expression,set the expression equal to 0
2(3a4)×5(2−5a)=0
Multiply the terms
2×3a4×5(2−5a)=0
Multiply the terms
More Steps

Multiply the terms
2×3a4×5(2−5a)
Multiply the terms
More Steps

Evaluate
2×3×5
Multiply the terms
6×5
Multiply the numbers
30
30a4(2−5a)
30a4(2−5a)=0
Elimination the left coefficient
a4(2−5a)=0
Separate the equation into 2 possible cases
a4=02−5a=0
The only way a power can be 0 is when the base equals 0
a=02−5a=0
Solve the equation
More Steps

Evaluate
2−5a=0
Move the constant to the right-hand side and change its sign
−5a=0−2
Removing 0 doesn't change the value,so remove it from the expression
−5a=−2
Change the signs on both sides of the equation
5a=2
Divide both sides
55a=52
Divide the numbers
a=52
a=0a=52
Solution
a1=0,a2=52
Alternative Form
a1=0,a2=0.4
Show Solution
