Question
2(5x×1)=2−5(4x−3)
Solve the equation
x=3017
Alternative Form
x=0.56˙
Evaluate
2(5x×1)=2−5(4x−3)
Remove the parentheses
2×5x×1=2−5(4x−3)
Multiply the terms
More Steps

Evaluate
2×5x×1
Rewrite the expression
2×5x
Multiply the terms
10x
10x=2−5(4x−3)
Move the expression to the left side
10x−(2−5(4x−3))=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10x−2+5(4x−3)=0
Calculate the sum or difference
More Steps

Evaluate
10x−2+5(4x−3)
Expand the expression
More Steps

Calculate
5(4x−3)
Apply the distributive property
5×4x−5×3
Multiply the numbers
20x−5×3
Multiply the numbers
20x−15
10x−2+20x−15
Add the terms
More Steps

Evaluate
10x+20x
Collect like terms by calculating the sum or difference of their coefficients
(10+20)x
Add the numbers
30x
30x−2−15
Subtract the numbers
30x−17
30x−17=0
Move the constant to the right-hand side and change its sign
30x=0+17
Removing 0 doesn't change the value,so remove it from the expression
30x=17
Divide both sides
3030x=3017
Solution
x=3017
Alternative Form
x=0.56˙
Show Solution

Rewrite the equation
30x=17
Evaluate
2(5x×1)=2−5(4x−3)
Evaluate
More Steps

Evaluate
2(5x×1)
Remove the parentheses
2×5x×1
Rewrite the expression
2×5x
Multiply the terms
10x
10x=2−5(4x−3)
Evaluate
More Steps

Evaluate
2−5(4x−3)
Expand the expression
More Steps

Calculate
−5(4x−3)
Apply the distributive property
−5×4x−(−5×3)
Multiply the numbers
−20x−(−5×3)
Multiply the numbers
−20x−(−15)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−20x+15
2−20x+15
Add the numbers
17−20x
10x=17−20x
Solution
30x=17
Show Solution
