Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve for x
16−17+7≤x≤1617+7
Alternative Form
x∈[16−17+7,1617+7]
Evaluate
2(9x−9)×2≥4(8x−6)×9x
Multiply the terms
4(9x−9)≥4(8x−6)×9x
Multiply
More Steps

Evaluate
4(8x−6)×9x
Multiply the terms
36(8x−6)x
Multiply the terms
36x(8x−6)
4(9x−9)≥36x(8x−6)
Move the expression to the left side
4(9x−9)−36x(8x−6)≥0
Subtract the terms
More Steps

Evaluate
4(9x−9)−36x(8x−6)
Expand the expression
More Steps

Calculate
4(9x−9)
Apply the distributive property
4×9x−4×9
Multiply the numbers
36x−4×9
Multiply the numbers
36x−36
36x−36−36x(8x−6)
Expand the expression
More Steps

Calculate
36x(8x−6)
Apply the distributive property
36x×8x−36x×6
Multiply the terms
288x2−36x×6
Multiply the numbers
288x2−216x
36x−36−(288x2−216x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36x−36−288x2+216x
Add the terms
More Steps

Evaluate
36x+216x
Collect like terms by calculating the sum or difference of their coefficients
(36+216)x
Add the numbers
252x
252x−36−288x2
252x−36−288x2≥0
Rewrite the expression
252x−36−288x2=0
Add or subtract both sides
252x−288x2=36
Divide both sides
−288252x−288x2=−28836
Evaluate
−87x+x2=−81
Add the same value to both sides
−87x+x2+25649=−81+25649
Simplify the expression
(x−167)2=25617
Take the root of both sides of the equation and remember to use both positive and negative roots
x−167=±25617
Simplify the expression
x−167=±1617
Separate the equation into 2 possible cases
x−167=1617x−167=−1617
Solve the equation
More Steps

Evaluate
x−167=1617
Move the constant to the right-hand side and change its sign
x=1617+167
Write all numerators above the common denominator
x=1617+7
x=1617+7x−167=−1617
Solve the equation
More Steps

Evaluate
x−167=−1617
Move the constant to the right-hand side and change its sign
x=−1617+167
Write all numerators above the common denominator
x=16−17+7
x=1617+7x=16−17+7
Determine the test intervals using the critical values
x<16−17+716−17+7<x<1617+7x>1617+7
Choose a value form each interval
x1=−1x2=167x3=2
To determine if x<16−17+7 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
4(9(−1)−9)≥36(−1)(8(−1)−6)
Simplify
More Steps

Evaluate
4(9(−1)−9)
Simplify
4(−9−9)
Subtract the numbers
4(−18)
Multiplying or dividing an odd number of negative terms equals a negative
−4×18
Multiply the numbers
−72
−72≥36(−1)(8(−1)−6)
Simplify
More Steps

Evaluate
36(−1)(8(−1)−6)
Simplify
36(−1)(−8−6)
Subtract the numbers
36(−1)(−14)
Any expression multiplied by 1 remains the same
36×14
Multiply the numbers
504
−72≥504
Check the inequality
false
x<16−17+7 is not a solutionx2=167x3=2
To determine if 16−17+7<x<1617+7 is the solution to the inequality,test if the chosen value x=167 satisfies the initial inequality
More Steps

Evaluate
4(9×167−9)≥36×167(8×167−6)
Simplify
More Steps

Evaluate
4(9×167−9)
Multiply the numbers
4(1663−9)
Subtract the numbers
4(−1681)
Multiplying or dividing an odd number of negative terms equals a negative
−4×1681
Reduce the numbers
−1×481
Multiply the numbers
−481
−481≥36×167(8×167−6)
Simplify
More Steps

Evaluate
36×167(8×167−6)
Multiply the numbers
36×167(27−6)
Subtract the numbers
36×167(−25)
Rewrite the expression
−36×167×25
Multiply the terms
−8315
−481≥−8315
Calculate
−20.25≥−8315
Calculate
−20.25≥−39.375
Check the inequality
true
x<16−17+7 is not a solution16−17+7<x<1617+7 is the solutionx3=2
To determine if x>1617+7 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
4(9×2−9)≥36×2(8×2−6)
Simplify
More Steps

Evaluate
4(9×2−9)
Multiply the numbers
4(18−9)
Subtract the numbers
4×9
Multiply the numbers
36
36≥36×2(8×2−6)
Simplify
More Steps

Evaluate
36×2(8×2−6)
Multiply the numbers
36×2(16−6)
Subtract the numbers
36×2×10
Multiply the terms
72×10
Multiply the numbers
720
36≥720
Check the inequality
false
x<16−17+7 is not a solution16−17+7<x<1617+7 is the solutionx>1617+7 is not a solution
The original inequality is a nonstrict inequality,so include the critical value in the solution
16−17+7≤x≤1617+7 is the solution
Solution
16−17+7≤x≤1617+7
Alternative Form
x∈[16−17+7,1617+7]
Show Solution
