Question
Simplify the expression
a−5a−a2+1
Evaluate
2(a2×a21)−(a−a1)−7
Remove the parentheses
2a2×a21−(a−a1)−7
Subtract the terms
More Steps

Simplify
a−a1
Reduce fractions to a common denominator
aa×a−a1
Write all numerators above the common denominator
aa×a−1
Multiply the terms
aa2−1
2a2×a21−aa2−1−7
Multiply the terms
More Steps

Multiply the terms
2a2×a21
Cancel out the common factor a2
2×1
Multiply the terms
2
2−aa2−1−7
Subtract the numbers
−5−aa2−1
Reduce fractions to a common denominator
−a5a−aa2−1
Write all numerators above the common denominator
a−5a−(a2−1)
Solution
a−5a−a2+1
Show Solution

Find the excluded values
a=0
Evaluate
2(a2×a21)−(a−a1)−7
To find the excluded values,set the denominators equal to 0
a2=0a=0
The only way a power can be 0 is when the base equals 0
a=0a=0
Solution
a=0
Show Solution

Find the roots
a1=−25+29,a2=2−5+29
Alternative Form
a1≈−5.192582,a2≈0.192582
Evaluate
2(a2×a21)−(a−a1)−7
To find the roots of the expression,set the expression equal to 0
2(a2×a21)−(a−a1)−7=0
Find the domain
More Steps

Evaluate
{a2=0a=0
The only way a power can not be 0 is when the base not equals 0
{a=0a=0
Find the intersection
a=0
2(a2×a21)−(a−a1)−7=0,a=0
Calculate
2(a2×a21)−(a−a1)−7=0
Multiply the terms
More Steps

Multiply the terms
a2×a21
Cancel out the common factor a2
1×1
Multiply the terms
1
2×1−(a−a1)−7=0
Subtract the terms
More Steps

Simplify
a−a1
Reduce fractions to a common denominator
aa×a−a1
Write all numerators above the common denominator
aa×a−1
Multiply the terms
aa2−1
2×1−aa2−1−7=0
Any expression multiplied by 1 remains the same
2−aa2−1−7=0
Subtract the terms
More Steps

Simplify
2−aa2−1
Reduce fractions to a common denominator
a2a−aa2−1
Write all numerators above the common denominator
a2a−(a2−1)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a2a−a2+1
a2a−a2+1−7=0
Subtract the terms
More Steps

Simplify
a2a−a2+1−7
Reduce fractions to a common denominator
a2a−a2+1−a7a
Write all numerators above the common denominator
a2a−a2+1−7a
Subtract the terms
More Steps

Evaluate
2a−7a
Collect like terms by calculating the sum or difference of their coefficients
(2−7)a
Subtract the numbers
−5a
a−5a−a2+1
a−5a−a2+1=0
Cross multiply
−5a−a2+1=a×0
Simplify the equation
−5a−a2+1=0
Rewrite in standard form
−a2−5a+1=0
Multiply both sides
a2+5a−1=0
Substitute a=1,b=5 and c=−1 into the quadratic formula a=2a−b±b2−4ac
a=2−5±52−4(−1)
Simplify the expression
More Steps

Evaluate
52−4(−1)
Simplify
52−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+4
Evaluate the power
25+4
Add the numbers
29
a=2−5±29
Separate the equation into 2 possible cases
a=2−5+29a=2−5−29
Use b−a=−ba=−ba to rewrite the fraction
a=2−5+29a=−25+29
Check if the solution is in the defined range
a=2−5+29a=−25+29,a=0
Find the intersection of the solution and the defined range
a=2−5+29a=−25+29
Solution
a1=−25+29,a2=2−5+29
Alternative Form
a1≈−5.192582,a2≈0.192582
Show Solution
