Question
Simplify the expression
52187j4
Evaluate
(2×10j3)j×37
Remove the parentheses
2×10j3j×37
Multiply the terms
More Steps

Multiply the terms
2×10j3
Cancel out the common factor 2
1×5j3
Multiply the terms
5j3
5j3j×37
Multiply the terms
More Steps

Multiply the terms
5j3j
Multiply the terms
5j3×j
Multiply the terms
More Steps

Evaluate
j3×j
Use the product rule an×am=an+m to simplify the expression
j3+1
Add the numbers
j4
5j4
5j4×37
Multiply the terms
5j4×37
Use the commutative property to reorder the terms
537j4
Solution
52187j4
Show Solution

Find the roots
j=0
Evaluate
(2×10j3)j×37
To find the roots of the expression,set the expression equal to 0
(2×10j3)j×37=0
Multiply the terms
More Steps

Multiply the terms
2×10j3
Cancel out the common factor 2
1×5j3
Multiply the terms
5j3
5j3j×37=0
Multiply the terms
More Steps

Multiply the terms
5j3j×37
Multiply the terms
More Steps

Multiply the terms
5j3j
Multiply the terms
5j3×j
Multiply the terms
5j4
5j4×37
Multiply the terms
5j4×37
Use the commutative property to reorder the terms
537j4
537j4=0
Simplify
37j4=0
Rewrite the expression
j4=0
Solution
j=0
Show Solution
