Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
p∈(−∞,0)∪(20−1515+40,201515+40)
Evaluate
2(p−4)×4×10p2<−10p−7p
Multiply
More Steps

Evaluate
2(p−4)×4×10p2
Multiply the terms
More Steps

Evaluate
2×4×10
Multiply the terms
8×10
Multiply the numbers
80
80(p−4)p2
Multiply the terms
80p2(p−4)
80p2(p−4)<−10p−7p
Subtract the terms
More Steps

Evaluate
−10p−7p
Collect like terms by calculating the sum or difference of their coefficients
(−10−7)p
Subtract the numbers
−17p
80p2(p−4)<−17p
Move the expression to the left side
80p2(p−4)−(−17p)<0
Subtract the terms
More Steps

Evaluate
80p2(p−4)−(−17p)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
80p2(p−4)+17p
Expand the expression
More Steps

Calculate
80p2(p−4)
Apply the distributive property
80p2×p−80p2×4
Multiply the terms
80p3−80p2×4
Multiply the numbers
80p3−320p2
80p3−320p2+17p
80p3−320p2+17p<0
Rewrite the expression
80p3−320p2+17p=0
Factor the expression
p(80p2−320p+17)=0
Separate the equation into 2 possible cases
p=080p2−320p+17=0
Solve the equation
More Steps

Evaluate
80p2−320p+17=0
Add or subtract both sides
80p2−320p=−17
Divide both sides
8080p2−320p=80−17
Evaluate
p2−4p=−8017
Add the same value to both sides
p2−4p+4=−8017+4
Simplify the expression
(p−2)2=80303
Take the root of both sides of the equation and remember to use both positive and negative roots
p−2=±80303
Simplify the expression
p−2=±201515
Separate the equation into 2 possible cases
p−2=201515p−2=−201515
Solve the equation
More Steps

Evaluate
p−2=201515
Move the constant to the right-hand side and change its sign
p=201515+2
Add the numbers
p=201515+40
p=201515+40p−2=−201515
Solve the equation
More Steps

Evaluate
p−2=−201515
Move the constant to the right-hand side and change its sign
p=−201515+2
Add the numbers
p=20−1515+40
p=201515+40p=20−1515+40
p=0p=201515+40p=20−1515+40
Determine the test intervals using the critical values
p<00<p<20−1515+4020−1515+40<p<201515+40p>201515+40
Choose a value form each interval
p1=−1p2=40−1515+40p3=2p4=5
To determine if p<0 is the solution to the inequality,test if the chosen value p=−1 satisfies the initial inequality
More Steps

Evaluate
80(−1)2(−1−4)<−17(−1)
Simplify
More Steps

Evaluate
80(−1)2(−1−4)
Subtract the numbers
80(−1)2(−5)
Evaluate the power
80×1×(−5)
Rewrite the expression
80(−5)
Multiplying or dividing an odd number of negative terms equals a negative
−80×5
Multiply the numbers
−400
−400<−17(−1)
Simplify
−400<17
Check the inequality
true
p<0 is the solutionp2=40−1515+40p3=2p4=5
To determine if 0<p<20−1515+40 is the solution to the inequality,test if the chosen value p=40−1515+40 satisfies the initial inequality
More Steps

Evaluate
80(40−1515+40)2(40−1515+40−4)<−17×40−1515+40
Simplify
More Steps

Evaluate
80(40−1515+40)2(40−1515+40−4)
Subtract the numbers
80(40−1515+40)2(−401515+120)
Rewrite the expression
−80(40−1515+40)2×401515+120
Multiply the terms
−(21515+240)(40−1515+40)2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−21515−240)(40−1515+40)2
Apply the distributive property
−21515×(40−1515+40)2−240(40−1515+40)2
Multiply the numbers
16024240−6231515−240(40−1515+40)2
Multiply the terms
16024240−6231515+4−1869+481515
Rewrite the expression
16024240−6231515−41869−481515
Reduce fractions to a common denominator
16024240−6231515−4×40(1869−481515)×40
Multiply the numbers
16024240−6231515−160(1869−481515)×40
Write all numerators above the common denominator
16024240−6231515−(1869−481515)×40
Multiply the terms
16024240−6231515−(74760−19201515)
Subtract the numbers
160−50520+12971515
160−50520+12971515<−17×40−1515+40
Multiply the numbers
More Steps

Evaluate
−17×40−1515+40
Multiplying or dividing an even number of negative terms equals a positive
17×401515−40
Multiply the numbers
4017(1515−40)
Multiply the numbers
40171515−680
160−50520+12971515<40171515−680
Calculate
−0.230424<40171515−680
Calculate
−0.230424<−0.457725
Check the inequality
false
p<0 is the solution0<p<20−1515+40 is not a solutionp3=2p4=5
To determine if 20−1515+40<p<201515+40 is the solution to the inequality,test if the chosen value p=2 satisfies the initial inequality
More Steps

Evaluate
80×22(2−4)<−17×2
Simplify
More Steps

Evaluate
80×22(2−4)
Subtract the numbers
80×22(−2)
Rewrite the expression
−80×22×2
Multiply the terms with the same base by adding their exponents
−80×22+1
Add the numbers
−80×23
Multiply the terms
−640
−640<−17×2
Multiply the numbers
−640<−34
Check the inequality
true
p<0 is the solution0<p<20−1515+40 is not a solution20−1515+40<p<201515+40 is the solutionp4=5
To determine if p>201515+40 is the solution to the inequality,test if the chosen value p=5 satisfies the initial inequality
More Steps

Evaluate
80×52(5−4)<−17×5
Simplify
More Steps

Evaluate
80×52(5−4)
Subtract the numbers
80×52×1
Rewrite the expression
80×52
Evaluate the power
80×25
Multiply the numbers
2000
2000<−17×5
Multiply the numbers
2000<−85
Check the inequality
false
p<0 is the solution0<p<20−1515+40 is not a solution20−1515+40<p<201515+40 is the solutionp>201515+40 is not a solution
Solution
p∈(−∞,0)∪(20−1515+40,201515+40)
Show Solution
