Question
Solve the equation(The real numbers system)
s∈/R
Alternative Form
No real solution
Evaluate
2(s−1)×8s=−72
Multiply
More Steps

Evaluate
2(s−1)×8s
Multiply the terms
16(s−1)s
Multiply the terms
16s(s−1)
16s(s−1)=−72
Expand the expression
More Steps

Evaluate
16s(s−1)
Apply the distributive property
16s×s−16s×1
Multiply the terms
16s2−16s×1
Any expression multiplied by 1 remains the same
16s2−16s
16s2−16s=−72
Move the expression to the left side
16s2−16s+72=0
Substitute a=16,b=−16 and c=72 into the quadratic formula s=2a−b±b2−4ac
s=2×1616±(−16)2−4×16×72
Simplify the expression
s=3216±(−16)2−4×16×72
Simplify the expression
More Steps

Evaluate
(−16)2−4×16×72
Multiply the terms
More Steps

Multiply the terms
4×16×72
Multiply the terms
64×72
Multiply the numbers
4608
(−16)2−4608
Rewrite the expression
162−4608
Evaluate the power
256−4608
Subtract the numbers
−4352
s=3216±−4352
Solution
s∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
s1=21−217i,s2=21+217i
Alternative Form
s1≈0.5−2.061553i,s2≈0.5+2.061553i
Evaluate
2(s−1)×8s=−72
Multiply
More Steps

Evaluate
2(s−1)×8s
Multiply the terms
16(s−1)s
Multiply the terms
16s(s−1)
16s(s−1)=−72
Expand the expression
More Steps

Evaluate
16s(s−1)
Apply the distributive property
16s×s−16s×1
Multiply the terms
16s2−16s×1
Any expression multiplied by 1 remains the same
16s2−16s
16s2−16s=−72
Move the expression to the left side
16s2−16s+72=0
Substitute a=16,b=−16 and c=72 into the quadratic formula s=2a−b±b2−4ac
s=2×1616±(−16)2−4×16×72
Simplify the expression
s=3216±(−16)2−4×16×72
Simplify the expression
More Steps

Evaluate
(−16)2−4×16×72
Multiply the terms
More Steps

Multiply the terms
4×16×72
Multiply the terms
64×72
Multiply the numbers
4608
(−16)2−4608
Rewrite the expression
162−4608
Evaluate the power
256−4608
Subtract the numbers
−4352
s=3216±−4352
Simplify the radical expression
More Steps

Evaluate
−4352
Evaluate the power
4352×−1
Evaluate the power
4352×i
Evaluate the power
More Steps

Evaluate
4352
Write the expression as a product where the root of one of the factors can be evaluated
256×17
Write the number in exponential form with the base of 16
162×17
The root of a product is equal to the product of the roots of each factor
162×17
Reduce the index of the radical and exponent with 2
1617
1617×i
s=3216±1617×i
Separate the equation into 2 possible cases
s=3216+1617×is=3216−1617×i
Simplify the expression
More Steps

Evaluate
s=3216+1617×i
Divide the terms
More Steps

Evaluate
3216+1617×i
Rewrite the expression
3216(1+17×i)
Cancel out the common factor 16
21+17×i
Simplify
21+217i
s=21+217i
s=21+217is=3216−1617×i
Simplify the expression
More Steps

Evaluate
s=3216−1617×i
Divide the terms
More Steps

Evaluate
3216−1617×i
Rewrite the expression
3216(1−17×i)
Cancel out the common factor 16
21−17×i
Simplify
21−217i
s=21−217i
s=21+217is=21−217i
Solution
s1=21−217i,s2=21+217i
Alternative Form
s1≈0.5−2.061553i,s2≈0.5+2.061553i
Show Solution
