Question
Simplify the expression
−40v7+240v6
Evaluate
2(v−6)×5(−4v6)
Rewrite the expression
−2(v−6)×5×4v6
Multiply the terms
More Steps

Evaluate
2×5×4
Multiply the terms
10×4
Multiply the numbers
40
−40(v−6)v6
Multiply the terms
−40v6(v−6)
Apply the distributive property
−40v6×v−(−40v6×6)
Multiply the terms
More Steps

Evaluate
v6×v
Use the product rule an×am=an+m to simplify the expression
v6+1
Add the numbers
v7
−40v7−(−40v6×6)
Multiply the numbers
−40v7−(−240v6)
Solution
−40v7+240v6
Show Solution

Find the roots
v1=0,v2=6
Evaluate
2(v−6)×5(−4v6)
To find the roots of the expression,set the expression equal to 0
2(v−6)×5(−4v6)=0
Multiply
More Steps

Multiply the terms
2(v−6)×5(−4v6)
Rewrite the expression
−2(v−6)×5×4v6
Multiply the terms
More Steps

Evaluate
2×5×4
Multiply the terms
10×4
Multiply the numbers
40
−40(v−6)v6
Multiply the terms
−40v6(v−6)
−40v6(v−6)=0
Change the sign
40v6(v−6)=0
Elimination the left coefficient
v6(v−6)=0
Separate the equation into 2 possible cases
v6=0v−6=0
The only way a power can be 0 is when the base equals 0
v=0v−6=0
Solve the equation
More Steps

Evaluate
v−6=0
Move the constant to the right-hand side and change its sign
v=0+6
Removing 0 doesn't change the value,so remove it from the expression
v=6
v=0v=6
Solution
v1=0,v2=6
Show Solution
