Question
Simplify the expression
−3x2−29x+242
Evaluate
2(x−11)2−(x−3)(x×1)×5
Remove the parentheses
2(x−11)2−(x−3)x×1×5
Multiply the terms
More Steps

Multiply the terms
(x−3)x×1×5
Rewrite the expression
(x−3)x×5
Use the commutative property to reorder the terms
(x−3)×5x
Multiply the terms
5x(x−3)
2(x−11)2−5x(x−3)
Expand the expression
More Steps

Calculate
2(x−11)2
Simplify
2(x2−22x+121)
Apply the distributive property
2x2−2×22x+2×121
Multiply the numbers
2x2−44x+2×121
Multiply the numbers
2x2−44x+242
2x2−44x+242−5x(x−3)
Expand the expression
More Steps

Calculate
−5x(x−3)
Apply the distributive property
−5x×x−(−5x×3)
Multiply the terms
−5x2−(−5x×3)
Multiply the numbers
−5x2−(−15x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5x2+15x
2x2−44x+242−5x2+15x
Subtract the terms
More Steps

Evaluate
2x2−5x2
Collect like terms by calculating the sum or difference of their coefficients
(2−5)x2
Subtract the numbers
−3x2
−3x2−44x+242+15x
Solution
More Steps

Evaluate
−44x+15x
Collect like terms by calculating the sum or difference of their coefficients
(−44+15)x
Add the numbers
−29x
−3x2−29x+242
Show Solution

Find the roots
x1=−629+3745,x2=6−29+3745
Alternative Form
x1≈−15.032734,x2≈5.366068
Evaluate
2(x−11)2−(x−3)(x×1)×5
To find the roots of the expression,set the expression equal to 0
2(x−11)2−(x−3)(x×1)×5=0
Any expression multiplied by 1 remains the same
2(x−11)2−(x−3)x×5=0
Multiply the terms
More Steps

Multiply the terms
(x−3)x×5
Use the commutative property to reorder the terms
(x−3)×5x
Multiply the terms
5x(x−3)
2(x−11)2−5x(x−3)=0
Calculate
More Steps

Evaluate
2(x−11)2−5x(x−3)
Expand the expression
More Steps

Calculate
2(x−11)2
Simplify
2(x2−22x+121)
Apply the distributive property
2x2−2×22x+2×121
Multiply the numbers
2x2−44x+2×121
Multiply the numbers
2x2−44x+242
2x2−44x+242−5x(x−3)
Expand the expression
More Steps

Calculate
−5x(x−3)
Apply the distributive property
−5x×x−(−5x×3)
Multiply the terms
−5x2−(−5x×3)
Multiply the numbers
−5x2−(−15x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5x2+15x
2x2−44x+242−5x2+15x
Subtract the terms
More Steps

Evaluate
2x2−5x2
Collect like terms by calculating the sum or difference of their coefficients
(2−5)x2
Subtract the numbers
−3x2
−3x2−44x+242+15x
Add the terms
More Steps

Evaluate
−44x+15x
Collect like terms by calculating the sum or difference of their coefficients
(−44+15)x
Add the numbers
−29x
−3x2−29x+242
−3x2−29x+242=0
Multiply both sides
3x2+29x−242=0
Substitute a=3,b=29 and c=−242 into the quadratic formula x=2a−b±b2−4ac
x=2×3−29±292−4×3(−242)
Simplify the expression
x=6−29±292−4×3(−242)
Simplify the expression
More Steps

Evaluate
292−4×3(−242)
Multiply
More Steps

Multiply the terms
4×3(−242)
Rewrite the expression
−4×3×242
Multiply the terms
−2904
292−(−2904)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
292+2904
Evaluate the power
841+2904
Add the numbers
3745
x=6−29±3745
Separate the equation into 2 possible cases
x=6−29+3745x=6−29−3745
Use b−a=−ba=−ba to rewrite the fraction
x=6−29+3745x=−629+3745
Solution
x1=−629+3745,x2=6−29+3745
Alternative Form
x1≈−15.032734,x2≈5.366068
Show Solution
